![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzosumm1 | Structured version Visualization version GIF version |
Description: Separate out the last term in a finite sum. (Contributed by Steven Nguyen, 22-Aug-2023.) |
Ref | Expression |
---|---|
fzosumm1.1 | ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) |
fzosumm1.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ) |
fzosumm1.3 | ⊢ (𝑘 = (𝑁 − 1) → 𝐴 = 𝐵) |
fzosumm1.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
fzosumm1 | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = (Σ𝑘 ∈ (𝑀..^(𝑁 − 1))𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzosumm1.1 | . . 3 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) | |
2 | fzosumm1.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | fzoval 13629 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
5 | 4 | eqcomd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑀...(𝑁 − 1)) = (𝑀..^𝑁)) |
6 | 5 | eleq2d 2811 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑘 ∈ (𝑀..^𝑁))) |
7 | 6 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀..^𝑁)) |
8 | fzosumm1.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ) | |
9 | 7, 8 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ) |
10 | fzosumm1.3 | . . 3 ⊢ (𝑘 = (𝑁 − 1) → 𝐴 = 𝐵) | |
11 | 1, 9, 10 | fsumm1 15693 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (Σ𝑘 ∈ (𝑀...((𝑁 − 1) − 1))𝐴 + 𝐵)) |
12 | 4 | sumeq1d 15643 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴) |
13 | eluzelz 12828 | . . . . 5 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ∈ ℤ) | |
14 | fzoval 13629 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℤ → (𝑀..^(𝑁 − 1)) = (𝑀...((𝑁 − 1) − 1))) | |
15 | 1, 13, 14 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑀..^(𝑁 − 1)) = (𝑀...((𝑁 − 1) − 1))) |
16 | 15 | sumeq1d 15643 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^(𝑁 − 1))𝐴 = Σ𝑘 ∈ (𝑀...((𝑁 − 1) − 1))𝐴) |
17 | 16 | oveq1d 7416 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀..^(𝑁 − 1))𝐴 + 𝐵) = (Σ𝑘 ∈ (𝑀...((𝑁 − 1) − 1))𝐴 + 𝐵)) |
18 | 11, 12, 17 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = (Σ𝑘 ∈ (𝑀..^(𝑁 − 1))𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 ℂcc 11103 1c1 11106 + caddc 11108 − cmin 11440 ℤcz 12554 ℤ≥cuz 12818 ...cfz 13480 ..^cfzo 13623 Σcsu 15628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 |
This theorem is referenced by: fltnltalem 41859 |
Copyright terms: Public domain | W3C validator |