Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdfval Structured version   Visualization version   GIF version

Theorem mapdfval 38244
Description: Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h 𝐻 = (LHyp‘𝐾)
mapdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval.s 𝑆 = (LSubSp‘𝑈)
mapdval.f 𝐹 = (LFnl‘𝑈)
mapdval.l 𝐿 = (LKer‘𝑈)
mapdval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
Assertion
Ref Expression
mapdfval ((𝐾𝑋𝑊𝐻) → 𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
Distinct variable groups:   𝑓,𝑠,𝐾   𝑓,𝐹   𝑆,𝑠   𝑓,𝑊,𝑠
Allowed substitution hints:   𝑆(𝑓)   𝑈(𝑓,𝑠)   𝐹(𝑠)   𝐻(𝑓,𝑠)   𝐿(𝑓,𝑠)   𝑀(𝑓,𝑠)   𝑂(𝑓,𝑠)   𝑋(𝑓,𝑠)

Proof of Theorem mapdfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdval.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
2 mapdval.h . . . . 5 𝐻 = (LHyp‘𝐾)
32mapdffval 38243 . . . 4 (𝐾𝑋 → (mapd‘𝐾) = (𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)})))
43fveq1d 6532 . . 3 (𝐾𝑋 → ((mapd‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))‘𝑊))
51, 4syl5eq 2841 . 2 (𝐾𝑋𝑀 = ((𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))‘𝑊))
6 fveq2 6530 . . . . . . 7 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
7 mapdval.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
86, 7syl6eqr 2847 . . . . . 6 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
98fveq2d 6534 . . . . 5 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = (LSubSp‘𝑈))
10 mapdval.s . . . . 5 𝑆 = (LSubSp‘𝑈)
119, 10syl6eqr 2847 . . . 4 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = 𝑆)
128fveq2d 6534 . . . . . 6 (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = (LFnl‘𝑈))
13 mapdval.f . . . . . 6 𝐹 = (LFnl‘𝑈)
1412, 13syl6eqr 2847 . . . . 5 (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = 𝐹)
15 fveq2 6530 . . . . . . . . 9 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ((ocH‘𝐾)‘𝑊))
16 mapdval.o . . . . . . . . 9 𝑂 = ((ocH‘𝐾)‘𝑊)
1715, 16syl6eqr 2847 . . . . . . . 8 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = 𝑂)
188fveq2d 6534 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = (LKer‘𝑈))
19 mapdval.l . . . . . . . . . . 11 𝐿 = (LKer‘𝑈)
2018, 19syl6eqr 2847 . . . . . . . . . 10 (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = 𝐿)
2120fveq1d 6532 . . . . . . . . 9 (𝑤 = 𝑊 → ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) = (𝐿𝑓))
2217, 21fveq12d 6537 . . . . . . . 8 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) = (𝑂‘(𝐿𝑓)))
2317, 22fveq12d 6537 . . . . . . 7 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = (𝑂‘(𝑂‘(𝐿𝑓))))
2423, 21eqeq12d 2808 . . . . . 6 (𝑤 = 𝑊 → ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ↔ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
2522sseq1d 3914 . . . . . 6 (𝑤 = 𝑊 → ((((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑠))
2624, 25anbi12d 630 . . . . 5 (𝑤 = 𝑊 → (((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)))
2714, 26rabeqbidv 3425 . . . 4 (𝑤 = 𝑊 → {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})
2811, 27mpteq12dv 5039 . . 3 (𝑤 = 𝑊 → (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}) = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
29 eqid 2793 . . 3 (𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)})) = (𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))
3028, 29, 10mptfvmpt 6847 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))‘𝑊) = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
315, 30sylan9eq 2849 1 ((𝐾𝑋𝑊𝐻) → 𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1520  wcel 2079  {crab 3107  wss 3854  cmpt 5035  cfv 6217  LSubSpclss 19381  LFnlclfn 35674  LKerclk 35702  LHypclh 36601  DVecHcdvh 37695  ocHcoch 37964  mapdcmpd 38241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-mapd 38242
This theorem is referenced by:  mapdval  38245  mapd1o  38265
  Copyright terms: Public domain W3C validator