Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdfval Structured version   Visualization version   GIF version

Theorem mapdfval 40493
Description: Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h 𝐻 = (LHypβ€˜πΎ)
mapdval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
mapdval.s 𝑆 = (LSubSpβ€˜π‘ˆ)
mapdval.f 𝐹 = (LFnlβ€˜π‘ˆ)
mapdval.l 𝐿 = (LKerβ€˜π‘ˆ)
mapdval.o 𝑂 = ((ocHβ€˜πΎ)β€˜π‘Š)
mapdval.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
mapdfval ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ 𝑀 = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)}))
Distinct variable groups:   𝑓,𝑠,𝐾   𝑓,𝐹   𝑆,𝑠   𝑓,π‘Š,𝑠
Allowed substitution hints:   𝑆(𝑓)   π‘ˆ(𝑓,𝑠)   𝐹(𝑠)   𝐻(𝑓,𝑠)   𝐿(𝑓,𝑠)   𝑀(𝑓,𝑠)   𝑂(𝑓,𝑠)   𝑋(𝑓,𝑠)

Proof of Theorem mapdfval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 mapdval.m . . 3 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
2 mapdval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
32mapdffval 40492 . . . 4 (𝐾 ∈ 𝑋 β†’ (mapdβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (𝑠 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) ∧ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) βŠ† 𝑠)})))
43fveq1d 6893 . . 3 (𝐾 ∈ 𝑋 β†’ ((mapdβ€˜πΎ)β€˜π‘Š) = ((𝑀 ∈ 𝐻 ↦ (𝑠 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) ∧ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) βŠ† 𝑠)}))β€˜π‘Š))
51, 4eqtrid 2784 . 2 (𝐾 ∈ 𝑋 β†’ 𝑀 = ((𝑀 ∈ 𝐻 ↦ (𝑠 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) ∧ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) βŠ† 𝑠)}))β€˜π‘Š))
6 fveq2 6891 . . . . . . 7 (𝑀 = π‘Š β†’ ((DVecHβ€˜πΎ)β€˜π‘€) = ((DVecHβ€˜πΎ)β€˜π‘Š))
7 mapdval.u . . . . . . 7 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
86, 7eqtr4di 2790 . . . . . 6 (𝑀 = π‘Š β†’ ((DVecHβ€˜πΎ)β€˜π‘€) = π‘ˆ)
98fveq2d 6895 . . . . 5 (𝑀 = π‘Š β†’ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = (LSubSpβ€˜π‘ˆ))
10 mapdval.s . . . . 5 𝑆 = (LSubSpβ€˜π‘ˆ)
119, 10eqtr4di 2790 . . . 4 (𝑀 = π‘Š β†’ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = 𝑆)
128fveq2d 6895 . . . . . 6 (𝑀 = π‘Š β†’ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = (LFnlβ€˜π‘ˆ))
13 mapdval.f . . . . . 6 𝐹 = (LFnlβ€˜π‘ˆ)
1412, 13eqtr4di 2790 . . . . 5 (𝑀 = π‘Š β†’ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = 𝐹)
15 fveq2 6891 . . . . . . . . 9 (𝑀 = π‘Š β†’ ((ocHβ€˜πΎ)β€˜π‘€) = ((ocHβ€˜πΎ)β€˜π‘Š))
16 mapdval.o . . . . . . . . 9 𝑂 = ((ocHβ€˜πΎ)β€˜π‘Š)
1715, 16eqtr4di 2790 . . . . . . . 8 (𝑀 = π‘Š β†’ ((ocHβ€˜πΎ)β€˜π‘€) = 𝑂)
188fveq2d 6895 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = (LKerβ€˜π‘ˆ))
19 mapdval.l . . . . . . . . . . 11 𝐿 = (LKerβ€˜π‘ˆ)
2018, 19eqtr4di 2790 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = 𝐿)
2120fveq1d 6893 . . . . . . . . 9 (𝑀 = π‘Š β†’ ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) = (πΏβ€˜π‘“))
2217, 21fveq12d 6898 . . . . . . . 8 (𝑀 = π‘Š β†’ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) = (π‘‚β€˜(πΏβ€˜π‘“)))
2317, 22fveq12d 6898 . . . . . . 7 (𝑀 = π‘Š β†’ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = (π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))))
2423, 21eqeq12d 2748 . . . . . 6 (𝑀 = π‘Š β†’ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) ↔ (π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)))
2522sseq1d 4013 . . . . . 6 (𝑀 = π‘Š β†’ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) βŠ† 𝑠 ↔ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠))
2624, 25anbi12d 631 . . . . 5 (𝑀 = π‘Š β†’ (((((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) ∧ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) βŠ† 𝑠) ↔ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)))
2714, 26rabeqbidv 3449 . . . 4 (𝑀 = π‘Š β†’ {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) ∧ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) βŠ† 𝑠)} = {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)})
2811, 27mpteq12dv 5239 . . 3 (𝑀 = π‘Š β†’ (𝑠 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) ∧ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) βŠ† 𝑠)}) = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)}))
29 eqid 2732 . . 3 (𝑀 ∈ 𝐻 ↦ (𝑠 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) ∧ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) βŠ† 𝑠)})) = (𝑀 ∈ 𝐻 ↦ (𝑠 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) ∧ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) βŠ† 𝑠)}))
3028, 29, 10mptfvmpt 7229 . 2 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ (𝑠 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) ∧ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) βŠ† 𝑠)}))β€˜π‘Š) = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)}))
315, 30sylan9eq 2792 1 ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ 𝑀 = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432   βŠ† wss 3948   ↦ cmpt 5231  β€˜cfv 6543  LSubSpclss 20541  LFnlclfn 37922  LKerclk 37950  LHypclh 38850  DVecHcdvh 39944  ocHcoch 40213  mapdcmpd 40490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-mapd 40491
This theorem is referenced by:  mapdval  40494  mapd1o  40514
  Copyright terms: Public domain W3C validator