Step | Hyp | Ref
| Expression |
1 | | mapdval.m |
. . 3
β’ π = ((mapdβπΎ)βπ) |
2 | | mapdval.h |
. . . . 5
β’ π» = (LHypβπΎ) |
3 | 2 | mapdffval 40492 |
. . . 4
β’ (πΎ β π β (mapdβπΎ) = (π€ β π» β¦ (π β (LSubSpβ((DVecHβπΎ)βπ€)) β¦ {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ ((((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ) β§ (((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)) β π )}))) |
4 | 3 | fveq1d 6893 |
. . 3
β’ (πΎ β π β ((mapdβπΎ)βπ) = ((π€ β π» β¦ (π β (LSubSpβ((DVecHβπΎ)βπ€)) β¦ {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ ((((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ) β§ (((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)) β π )}))βπ)) |
5 | 1, 4 | eqtrid 2784 |
. 2
β’ (πΎ β π β π = ((π€ β π» β¦ (π β (LSubSpβ((DVecHβπΎ)βπ€)) β¦ {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ ((((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ) β§ (((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)) β π )}))βπ)) |
6 | | fveq2 6891 |
. . . . . . 7
β’ (π€ = π β ((DVecHβπΎ)βπ€) = ((DVecHβπΎ)βπ)) |
7 | | mapdval.u |
. . . . . . 7
β’ π = ((DVecHβπΎ)βπ) |
8 | 6, 7 | eqtr4di 2790 |
. . . . . 6
β’ (π€ = π β ((DVecHβπΎ)βπ€) = π) |
9 | 8 | fveq2d 6895 |
. . . . 5
β’ (π€ = π β (LSubSpβ((DVecHβπΎ)βπ€)) = (LSubSpβπ)) |
10 | | mapdval.s |
. . . . 5
β’ π = (LSubSpβπ) |
11 | 9, 10 | eqtr4di 2790 |
. . . 4
β’ (π€ = π β (LSubSpβ((DVecHβπΎ)βπ€)) = π) |
12 | 8 | fveq2d 6895 |
. . . . . 6
β’ (π€ = π β (LFnlβ((DVecHβπΎ)βπ€)) = (LFnlβπ)) |
13 | | mapdval.f |
. . . . . 6
β’ πΉ = (LFnlβπ) |
14 | 12, 13 | eqtr4di 2790 |
. . . . 5
β’ (π€ = π β (LFnlβ((DVecHβπΎ)βπ€)) = πΉ) |
15 | | fveq2 6891 |
. . . . . . . . 9
β’ (π€ = π β ((ocHβπΎ)βπ€) = ((ocHβπΎ)βπ)) |
16 | | mapdval.o |
. . . . . . . . 9
β’ π = ((ocHβπΎ)βπ) |
17 | 15, 16 | eqtr4di 2790 |
. . . . . . . 8
β’ (π€ = π β ((ocHβπΎ)βπ€) = π) |
18 | 8 | fveq2d 6895 |
. . . . . . . . . . 11
β’ (π€ = π β (LKerβ((DVecHβπΎ)βπ€)) = (LKerβπ)) |
19 | | mapdval.l |
. . . . . . . . . . 11
β’ πΏ = (LKerβπ) |
20 | 18, 19 | eqtr4di 2790 |
. . . . . . . . . 10
β’ (π€ = π β (LKerβ((DVecHβπΎ)βπ€)) = πΏ) |
21 | 20 | fveq1d 6893 |
. . . . . . . . 9
β’ (π€ = π β ((LKerβ((DVecHβπΎ)βπ€))βπ) = (πΏβπ)) |
22 | 17, 21 | fveq12d 6898 |
. . . . . . . 8
β’ (π€ = π β (((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)) = (πβ(πΏβπ))) |
23 | 17, 22 | fveq12d 6898 |
. . . . . . 7
β’ (π€ = π β (((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = (πβ(πβ(πΏβπ)))) |
24 | 23, 21 | eqeq12d 2748 |
. . . . . 6
β’ (π€ = π β ((((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ) β (πβ(πβ(πΏβπ))) = (πΏβπ))) |
25 | 22 | sseq1d 4013 |
. . . . . 6
β’ (π€ = π β ((((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)) β π β (πβ(πΏβπ)) β π )) |
26 | 24, 25 | anbi12d 631 |
. . . . 5
β’ (π€ = π β (((((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ) β§ (((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)) β π ) β ((πβ(πβ(πΏβπ))) = (πΏβπ) β§ (πβ(πΏβπ)) β π ))) |
27 | 14, 26 | rabeqbidv 3449 |
. . . 4
β’ (π€ = π β {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ ((((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ) β§ (((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)) β π )} = {π β πΉ β£ ((πβ(πβ(πΏβπ))) = (πΏβπ) β§ (πβ(πΏβπ)) β π )}) |
28 | 11, 27 | mpteq12dv 5239 |
. . 3
β’ (π€ = π β (π β (LSubSpβ((DVecHβπΎ)βπ€)) β¦ {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ ((((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ) β§ (((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)) β π )}) = (π β π β¦ {π β πΉ β£ ((πβ(πβ(πΏβπ))) = (πΏβπ) β§ (πβ(πΏβπ)) β π )})) |
29 | | eqid 2732 |
. . 3
β’ (π€ β π» β¦ (π β (LSubSpβ((DVecHβπΎ)βπ€)) β¦ {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ ((((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ) β§ (((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)) β π )})) = (π€ β π» β¦ (π β (LSubSpβ((DVecHβπΎ)βπ€)) β¦ {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ ((((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ) β§ (((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)) β π )})) |
30 | 28, 29, 10 | mptfvmpt 7229 |
. 2
β’ (π β π» β ((π€ β π» β¦ (π β (LSubSpβ((DVecHβπΎ)βπ€)) β¦ {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ ((((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ) β§ (((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)) β π )}))βπ) = (π β π β¦ {π β πΉ β£ ((πβ(πβ(πΏβπ))) = (πΏβπ) β§ (πβ(πΏβπ)) β π )})) |
31 | 5, 30 | sylan9eq 2792 |
1
β’ ((πΎ β π β§ π β π») β π = (π β π β¦ {π β πΉ β£ ((πβ(πβ(πΏβπ))) = (πΏβπ) β§ (πβ(πΏβπ)) β π )})) |