Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdfval Structured version   Visualization version   GIF version

Theorem mapdfval 38757
Description: Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h 𝐻 = (LHyp‘𝐾)
mapdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval.s 𝑆 = (LSubSp‘𝑈)
mapdval.f 𝐹 = (LFnl‘𝑈)
mapdval.l 𝐿 = (LKer‘𝑈)
mapdval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
Assertion
Ref Expression
mapdfval ((𝐾𝑋𝑊𝐻) → 𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
Distinct variable groups:   𝑓,𝑠,𝐾   𝑓,𝐹   𝑆,𝑠   𝑓,𝑊,𝑠
Allowed substitution hints:   𝑆(𝑓)   𝑈(𝑓,𝑠)   𝐹(𝑠)   𝐻(𝑓,𝑠)   𝐿(𝑓,𝑠)   𝑀(𝑓,𝑠)   𝑂(𝑓,𝑠)   𝑋(𝑓,𝑠)

Proof of Theorem mapdfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdval.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
2 mapdval.h . . . . 5 𝐻 = (LHyp‘𝐾)
32mapdffval 38756 . . . 4 (𝐾𝑋 → (mapd‘𝐾) = (𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)})))
43fveq1d 6667 . . 3 (𝐾𝑋 → ((mapd‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))‘𝑊))
51, 4syl5eq 2868 . 2 (𝐾𝑋𝑀 = ((𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))‘𝑊))
6 fveq2 6665 . . . . . . 7 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
7 mapdval.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
86, 7syl6eqr 2874 . . . . . 6 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
98fveq2d 6669 . . . . 5 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = (LSubSp‘𝑈))
10 mapdval.s . . . . 5 𝑆 = (LSubSp‘𝑈)
119, 10syl6eqr 2874 . . . 4 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = 𝑆)
128fveq2d 6669 . . . . . 6 (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = (LFnl‘𝑈))
13 mapdval.f . . . . . 6 𝐹 = (LFnl‘𝑈)
1412, 13syl6eqr 2874 . . . . 5 (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = 𝐹)
15 fveq2 6665 . . . . . . . . 9 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ((ocH‘𝐾)‘𝑊))
16 mapdval.o . . . . . . . . 9 𝑂 = ((ocH‘𝐾)‘𝑊)
1715, 16syl6eqr 2874 . . . . . . . 8 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = 𝑂)
188fveq2d 6669 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = (LKer‘𝑈))
19 mapdval.l . . . . . . . . . . 11 𝐿 = (LKer‘𝑈)
2018, 19syl6eqr 2874 . . . . . . . . . 10 (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = 𝐿)
2120fveq1d 6667 . . . . . . . . 9 (𝑤 = 𝑊 → ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) = (𝐿𝑓))
2217, 21fveq12d 6672 . . . . . . . 8 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) = (𝑂‘(𝐿𝑓)))
2317, 22fveq12d 6672 . . . . . . 7 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = (𝑂‘(𝑂‘(𝐿𝑓))))
2423, 21eqeq12d 2837 . . . . . 6 (𝑤 = 𝑊 → ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ↔ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
2522sseq1d 3998 . . . . . 6 (𝑤 = 𝑊 → ((((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑠))
2624, 25anbi12d 632 . . . . 5 (𝑤 = 𝑊 → (((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)))
2714, 26rabeqbidv 3486 . . . 4 (𝑤 = 𝑊 → {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})
2811, 27mpteq12dv 5144 . . 3 (𝑤 = 𝑊 → (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}) = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
29 eqid 2821 . . 3 (𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)})) = (𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))
3028, 29, 10mptfvmpt 6984 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))‘𝑊) = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
315, 30sylan9eq 2876 1 ((𝐾𝑋𝑊𝐻) → 𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  wss 3936  cmpt 5139  cfv 6350  LSubSpclss 19697  LFnlclfn 36187  LKerclk 36215  LHypclh 37114  DVecHcdvh 38208  ocHcoch 38477  mapdcmpd 38754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-mapd 38755
This theorem is referenced by:  mapdval  38758  mapd1o  38778
  Copyright terms: Public domain W3C validator