Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pxel Structured version   Visualization version   GIF version

Theorem rrx2pxel 48706
Description: The x-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2px.i 𝐼 = {1, 2}
rrx2px.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx2pxel (𝑋𝑃 → (𝑋‘1) ∈ ℝ)

Proof of Theorem rrx2pxel
StepHypRef Expression
1 rrx2px.b . 2 𝑃 = (ℝ ↑m 𝐼)
2 id 22 . 2 (𝑋𝑃𝑋𝑃)
3 1ex 11111 . . . . 5 1 ∈ V
43prid1 4714 . . . 4 1 ∈ {1, 2}
5 rrx2px.i . . . 4 𝐼 = {1, 2}
64, 5eleqtrri 2827 . . 3 1 ∈ 𝐼
76a1i 11 . 2 (𝑋𝑃 → 1 ∈ 𝐼)
81, 2, 7mapfvd 8806 1 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cpr 4579  cfv 6482  (class class class)co 7349  m cmap 8753  cr 11008  1c1 11010  2c2 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-1cn 11067
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755
This theorem is referenced by:  rrx2pnedifcoorneor  48711  rrx2plord2  48717  ehl2eudisval0  48720  ehl2eudis0lt  48721  rrx2vlinest  48736  rrx2linest  48737  rrx2linest2  48739  2sphere  48744  2sphere0  48745  line2  48747  line2x  48749  line2y  48750  itsclc0  48766  itsclc0b  48767  itsclinecirc0  48768  itsclinecirc0b  48769  itsclinecirc0in  48770  itscnhlinecirc02plem3  48779  itscnhlinecirc02p  48780  inlinecirc02plem  48781  inlinecirc02p  48782
  Copyright terms: Public domain W3C validator