Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pxel Structured version   Visualization version   GIF version

Theorem rrx2pxel 47975
Description: The x-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2px.i 𝐼 = {1, 2}
rrx2px.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx2pxel (𝑋𝑃 → (𝑋‘1) ∈ ℝ)

Proof of Theorem rrx2pxel
StepHypRef Expression
1 rrx2px.b . 2 𝑃 = (ℝ ↑m 𝐼)
2 id 22 . 2 (𝑋𝑃𝑋𝑃)
3 1ex 11247 . . . . 5 1 ∈ V
43prid1 4768 . . . 4 1 ∈ {1, 2}
5 rrx2px.i . . . 4 𝐼 = {1, 2}
64, 5eleqtrri 2824 . . 3 1 ∈ 𝐼
76a1i 11 . 2 (𝑋𝑃 → 1 ∈ 𝐼)
81, 2, 7mapfvd 8898 1 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {cpr 4632  cfv 6549  (class class class)co 7419  m cmap 8845  cr 11144  1c1 11146  2c2 12305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-1cn 11203
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-map 8847
This theorem is referenced by:  rrx2pnedifcoorneor  47980  rrx2plord2  47986  ehl2eudisval0  47989  ehl2eudis0lt  47990  rrx2vlinest  48005  rrx2linest  48006  rrx2linest2  48008  2sphere  48013  2sphere0  48014  line2  48016  line2x  48018  line2y  48019  itsclc0  48035  itsclc0b  48036  itsclinecirc0  48037  itsclinecirc0b  48038  itsclinecirc0in  48039  itscnhlinecirc02plem3  48048  itscnhlinecirc02p  48049  inlinecirc02plem  48050  inlinecirc02p  48051
  Copyright terms: Public domain W3C validator