Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pxel | Structured version Visualization version GIF version |
Description: The x-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) |
Ref | Expression |
---|---|
rrx2px.i | ⊢ 𝐼 = {1, 2} |
rrx2px.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
Ref | Expression |
---|---|
rrx2pxel | ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2px.b | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
2 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
3 | 1ex 10959 | . . . . 5 ⊢ 1 ∈ V | |
4 | 3 | prid1 4699 | . . . 4 ⊢ 1 ∈ {1, 2} |
5 | rrx2px.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
6 | 4, 5 | eleqtrri 2838 | . . 3 ⊢ 1 ∈ 𝐼 |
7 | 6 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑃 → 1 ∈ 𝐼) |
8 | 1, 2, 7 | mapfvd 8655 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cpr 4564 ‘cfv 6427 (class class class)co 7268 ↑m cmap 8603 ℝcr 10858 1c1 10860 2c2 12016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-1cn 10917 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-fv 6435 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7821 df-2nd 7822 df-map 8605 |
This theorem is referenced by: rrx2pnedifcoorneor 46018 rrx2plord2 46024 ehl2eudisval0 46027 ehl2eudis0lt 46028 rrx2vlinest 46043 rrx2linest 46044 rrx2linest2 46046 2sphere 46051 2sphere0 46052 line2 46054 line2x 46056 line2y 46057 itsclc0 46073 itsclc0b 46074 itsclinecirc0 46075 itsclinecirc0b 46076 itsclinecirc0in 46077 itscnhlinecirc02plem3 46086 itscnhlinecirc02p 46087 inlinecirc02plem 46088 inlinecirc02p 46089 |
Copyright terms: Public domain | W3C validator |