| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pxel | Structured version Visualization version GIF version | ||
| Description: The x-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx2px.i | ⊢ 𝐼 = {1, 2} |
| rrx2px.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| rrx2pxel | ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx2px.b | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 2 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
| 3 | 1ex 11108 | . . . . 5 ⊢ 1 ∈ V | |
| 4 | 3 | prid1 4712 | . . . 4 ⊢ 1 ∈ {1, 2} |
| 5 | rrx2px.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 6 | 4, 5 | eleqtrri 2830 | . . 3 ⊢ 1 ∈ 𝐼 |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑃 → 1 ∈ 𝐼) |
| 8 | 1, 2, 7 | mapfvd 8803 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cpr 4575 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℝcr 11005 1c1 11007 2c2 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-1cn 11064 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 |
| This theorem is referenced by: rrx2pnedifcoorneor 48816 rrx2plord2 48822 ehl2eudisval0 48825 ehl2eudis0lt 48826 rrx2vlinest 48841 rrx2linest 48842 rrx2linest2 48844 2sphere 48849 2sphere0 48850 line2 48852 line2x 48854 line2y 48855 itsclc0 48871 itsclc0b 48872 itsclinecirc0 48873 itsclinecirc0b 48874 itsclinecirc0in 48875 itscnhlinecirc02plem3 48884 itscnhlinecirc02p 48885 inlinecirc02plem 48886 inlinecirc02p 48887 |
| Copyright terms: Public domain | W3C validator |