![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pxel | Structured version Visualization version GIF version |
Description: The x-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) |
Ref | Expression |
---|---|
rrx2px.i | ⊢ 𝐼 = {1, 2} |
rrx2px.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
Ref | Expression |
---|---|
rrx2pxel | ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2px.b | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
2 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
3 | 1ex 11286 | . . . . 5 ⊢ 1 ∈ V | |
4 | 3 | prid1 4787 | . . . 4 ⊢ 1 ∈ {1, 2} |
5 | rrx2px.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
6 | 4, 5 | eleqtrri 2843 | . . 3 ⊢ 1 ∈ 𝐼 |
7 | 6 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑃 → 1 ∈ 𝐼) |
8 | 1, 2, 7 | mapfvd 8937 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {cpr 4650 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℝcr 11183 1c1 11185 2c2 12348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-1cn 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: rrx2pnedifcoorneor 48450 rrx2plord2 48456 ehl2eudisval0 48459 ehl2eudis0lt 48460 rrx2vlinest 48475 rrx2linest 48476 rrx2linest2 48478 2sphere 48483 2sphere0 48484 line2 48486 line2x 48488 line2y 48489 itsclc0 48505 itsclc0b 48506 itsclinecirc0 48507 itsclinecirc0b 48508 itsclinecirc0in 48509 itscnhlinecirc02plem3 48518 itscnhlinecirc02p 48519 inlinecirc02plem 48520 inlinecirc02p 48521 |
Copyright terms: Public domain | W3C validator |