| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pxel | Structured version Visualization version GIF version | ||
| Description: The x-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx2px.i | ⊢ 𝐼 = {1, 2} |
| rrx2px.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| rrx2pxel | ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx2px.b | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 2 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
| 3 | 1ex 11111 | . . . . 5 ⊢ 1 ∈ V | |
| 4 | 3 | prid1 4714 | . . . 4 ⊢ 1 ∈ {1, 2} |
| 5 | rrx2px.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 6 | 4, 5 | eleqtrri 2827 | . . 3 ⊢ 1 ∈ 𝐼 |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑃 → 1 ∈ 𝐼) |
| 8 | 1, 2, 7 | mapfvd 8806 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cpr 4579 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 ℝcr 11008 1c1 11010 2c2 12183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-1cn 11067 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 |
| This theorem is referenced by: rrx2pnedifcoorneor 48711 rrx2plord2 48717 ehl2eudisval0 48720 ehl2eudis0lt 48721 rrx2vlinest 48736 rrx2linest 48737 rrx2linest2 48739 2sphere 48744 2sphere0 48745 line2 48747 line2x 48749 line2y 48750 itsclc0 48766 itsclc0b 48767 itsclinecirc0 48768 itsclinecirc0b 48769 itsclinecirc0in 48770 itscnhlinecirc02plem3 48779 itscnhlinecirc02p 48780 inlinecirc02plem 48781 inlinecirc02p 48782 |
| Copyright terms: Public domain | W3C validator |