Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pxel Structured version   Visualization version   GIF version

Theorem rrx2pxel 48700
Description: The x-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2px.i 𝐼 = {1, 2}
rrx2px.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx2pxel (𝑋𝑃 → (𝑋‘1) ∈ ℝ)

Proof of Theorem rrx2pxel
StepHypRef Expression
1 rrx2px.b . 2 𝑃 = (ℝ ↑m 𝐼)
2 id 22 . 2 (𝑋𝑃𝑋𝑃)
3 1ex 11170 . . . . 5 1 ∈ V
43prid1 4726 . . . 4 1 ∈ {1, 2}
5 rrx2px.i . . . 4 𝐼 = {1, 2}
64, 5eleqtrri 2827 . . 3 1 ∈ 𝐼
76a1i 11 . 2 (𝑋𝑃 → 1 ∈ 𝐼)
81, 2, 7mapfvd 8852 1 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cpr 4591  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067  1c1 11069  2c2 12241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-1cn 11126
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by:  rrx2pnedifcoorneor  48705  rrx2plord2  48711  ehl2eudisval0  48714  ehl2eudis0lt  48715  rrx2vlinest  48730  rrx2linest  48731  rrx2linest2  48733  2sphere  48738  2sphere0  48739  line2  48741  line2x  48743  line2y  48744  itsclc0  48760  itsclc0b  48761  itsclinecirc0  48762  itsclinecirc0b  48763  itsclinecirc0in  48764  itscnhlinecirc02plem3  48773  itscnhlinecirc02p  48774  inlinecirc02plem  48775  inlinecirc02p  48776
  Copyright terms: Public domain W3C validator