| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pyel | Structured version Visualization version GIF version | ||
| Description: The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx2px.i | ⊢ 𝐼 = {1, 2} |
| rrx2px.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| rrx2pyel | ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx2px.b | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 2 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
| 3 | 2ex 12213 | . . . . 5 ⊢ 2 ∈ V | |
| 4 | 3 | prid2 4717 | . . . 4 ⊢ 2 ∈ {1, 2} |
| 5 | rrx2px.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 6 | 4, 5 | eleqtrri 2832 | . . 3 ⊢ 2 ∈ 𝐼 |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑃 → 2 ∈ 𝐼) |
| 8 | 1, 2, 7 | mapfvd 8813 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {cpr 4579 ‘cfv 6489 (class class class)co 7355 ↑m cmap 8759 ℝcr 11016 1c1 11018 2c2 12191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-1cn 11075 ax-addcl 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 df-2 12199 |
| This theorem is referenced by: rrx2pnedifcoorneor 48878 rrx2pnedifcoorneorr 48879 ehl2eudisval0 48887 ehl2eudis0lt 48888 rrx2vlinest 48903 rrx2linest 48904 rrx2linest2 48906 2sphere 48911 2sphere0 48912 line2 48914 line2x 48916 line2y 48917 itsclc0 48933 itsclc0b 48934 itsclinecirc0 48935 itsclinecirc0b 48936 itsclinecirc0in 48937 itscnhlinecirc02plem3 48946 itscnhlinecirc02p 48947 inlinecirc02plem 48948 inlinecirc02p 48949 |
| Copyright terms: Public domain | W3C validator |