| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pyel | Structured version Visualization version GIF version | ||
| Description: The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx2px.i | ⊢ 𝐼 = {1, 2} |
| rrx2px.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| rrx2pyel | ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx2px.b | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 2 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
| 3 | 2ex 12322 | . . . . 5 ⊢ 2 ∈ V | |
| 4 | 3 | prid2 4744 | . . . 4 ⊢ 2 ∈ {1, 2} |
| 5 | rrx2px.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 6 | 4, 5 | eleqtrri 2834 | . . 3 ⊢ 2 ∈ 𝐼 |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑃 → 2 ∈ 𝐼) |
| 8 | 1, 2, 7 | mapfvd 8898 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cpr 4608 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 ℝcr 11133 1c1 11135 2c2 12300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 df-2 12308 |
| This theorem is referenced by: rrx2pnedifcoorneor 48663 rrx2pnedifcoorneorr 48664 ehl2eudisval0 48672 ehl2eudis0lt 48673 rrx2vlinest 48688 rrx2linest 48689 rrx2linest2 48691 2sphere 48696 2sphere0 48697 line2 48699 line2x 48701 line2y 48702 itsclc0 48718 itsclc0b 48719 itsclinecirc0 48720 itsclinecirc0b 48721 itsclinecirc0in 48722 itscnhlinecirc02plem3 48731 itscnhlinecirc02p 48732 inlinecirc02plem 48733 inlinecirc02p 48734 |
| Copyright terms: Public domain | W3C validator |