Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pyel Structured version   Visualization version   GIF version

Theorem rrx2pyel 48659
Description: The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2px.i 𝐼 = {1, 2}
rrx2px.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx2pyel (𝑋𝑃 → (𝑋‘2) ∈ ℝ)

Proof of Theorem rrx2pyel
StepHypRef Expression
1 rrx2px.b . 2 𝑃 = (ℝ ↑m 𝐼)
2 id 22 . 2 (𝑋𝑃𝑋𝑃)
3 2ex 12322 . . . . 5 2 ∈ V
43prid2 4744 . . . 4 2 ∈ {1, 2}
5 rrx2px.i . . . 4 𝐼 = {1, 2}
64, 5eleqtrri 2834 . . 3 2 ∈ 𝐼
76a1i 11 . 2 (𝑋𝑃 → 2 ∈ 𝐼)
81, 2, 7mapfvd 8898 1 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cpr 4608  cfv 6536  (class class class)co 7410  m cmap 8845  cr 11133  1c1 11135  2c2 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-2 12308
This theorem is referenced by:  rrx2pnedifcoorneor  48663  rrx2pnedifcoorneorr  48664  ehl2eudisval0  48672  ehl2eudis0lt  48673  rrx2vlinest  48688  rrx2linest  48689  rrx2linest2  48691  2sphere  48696  2sphere0  48697  line2  48699  line2x  48701  line2y  48702  itsclc0  48718  itsclc0b  48719  itsclinecirc0  48720  itsclinecirc0b  48721  itsclinecirc0in  48722  itscnhlinecirc02plem3  48731  itscnhlinecirc02p  48732  inlinecirc02plem  48733  inlinecirc02p  48734
  Copyright terms: Public domain W3C validator