Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pyel Structured version   Visualization version   GIF version

Theorem rrx2pyel 48874
Description: The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2px.i 𝐼 = {1, 2}
rrx2px.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx2pyel (𝑋𝑃 → (𝑋‘2) ∈ ℝ)

Proof of Theorem rrx2pyel
StepHypRef Expression
1 rrx2px.b . 2 𝑃 = (ℝ ↑m 𝐼)
2 id 22 . 2 (𝑋𝑃𝑋𝑃)
3 2ex 12213 . . . . 5 2 ∈ V
43prid2 4717 . . . 4 2 ∈ {1, 2}
5 rrx2px.i . . . 4 𝐼 = {1, 2}
64, 5eleqtrri 2832 . . 3 2 ∈ 𝐼
76a1i 11 . 2 (𝑋𝑃 → 2 ∈ 𝐼)
81, 2, 7mapfvd 8813 1 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {cpr 4579  cfv 6489  (class class class)co 7355  m cmap 8759  cr 11016  1c1 11018  2c2 12191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-1cn 11075  ax-addcl 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-2 12199
This theorem is referenced by:  rrx2pnedifcoorneor  48878  rrx2pnedifcoorneorr  48879  ehl2eudisval0  48887  ehl2eudis0lt  48888  rrx2vlinest  48903  rrx2linest  48904  rrx2linest2  48906  2sphere  48911  2sphere0  48912  line2  48914  line2x  48916  line2y  48917  itsclc0  48933  itsclc0b  48934  itsclinecirc0  48935  itsclinecirc0b  48936  itsclinecirc0in  48937  itscnhlinecirc02plem3  48946  itscnhlinecirc02p  48947  inlinecirc02plem  48948  inlinecirc02p  48949
  Copyright terms: Public domain W3C validator