Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pyel Structured version   Visualization version   GIF version

Theorem rrx2pyel 47388
Description: The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2px.i 𝐼 = {1, 2}
rrx2px.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx2pyel (𝑋𝑃 → (𝑋‘2) ∈ ℝ)

Proof of Theorem rrx2pyel
StepHypRef Expression
1 rrx2px.b . 2 𝑃 = (ℝ ↑m 𝐼)
2 id 22 . 2 (𝑋𝑃𝑋𝑃)
3 2ex 12288 . . . . 5 2 ∈ V
43prid2 4767 . . . 4 2 ∈ {1, 2}
5 rrx2px.i . . . 4 𝐼 = {1, 2}
64, 5eleqtrri 2832 . . 3 2 ∈ 𝐼
76a1i 11 . 2 (𝑋𝑃 → 2 ∈ 𝐼)
81, 2, 7mapfvd 8872 1 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  {cpr 4630  cfv 6543  (class class class)co 7408  m cmap 8819  cr 11108  1c1 11110  2c2 12266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-1cn 11167  ax-addcl 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821  df-2 12274
This theorem is referenced by:  rrx2pnedifcoorneor  47392  rrx2pnedifcoorneorr  47393  ehl2eudisval0  47401  ehl2eudis0lt  47402  rrx2vlinest  47417  rrx2linest  47418  rrx2linest2  47420  2sphere  47425  2sphere0  47426  line2  47428  line2x  47430  line2y  47431  itsclc0  47447  itsclc0b  47448  itsclinecirc0  47449  itsclinecirc0b  47450  itsclinecirc0in  47451  itscnhlinecirc02plem3  47460  itscnhlinecirc02p  47461  inlinecirc02plem  47462  inlinecirc02p  47463
  Copyright terms: Public domain W3C validator