|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pyel | Structured version Visualization version GIF version | ||
| Description: The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) | 
| Ref | Expression | 
|---|---|
| rrx2px.i | ⊢ 𝐼 = {1, 2} | 
| rrx2px.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) | 
| Ref | Expression | 
|---|---|
| rrx2pyel | ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rrx2px.b | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 2 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
| 3 | 2ex 12344 | . . . . 5 ⊢ 2 ∈ V | |
| 4 | 3 | prid2 4762 | . . . 4 ⊢ 2 ∈ {1, 2} | 
| 5 | rrx2px.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 6 | 4, 5 | eleqtrri 2839 | . . 3 ⊢ 2 ∈ 𝐼 | 
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑃 → 2 ∈ 𝐼) | 
| 8 | 1, 2, 7 | mapfvd 8920 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cpr 4627 ‘cfv 6560 (class class class)co 7432 ↑m cmap 8867 ℝcr 11155 1c1 11157 2c2 12322 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-1cn 11214 ax-addcl 11216 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-map 8869 df-2 12330 | 
| This theorem is referenced by: rrx2pnedifcoorneor 48642 rrx2pnedifcoorneorr 48643 ehl2eudisval0 48651 ehl2eudis0lt 48652 rrx2vlinest 48667 rrx2linest 48668 rrx2linest2 48670 2sphere 48675 2sphere0 48676 line2 48678 line2x 48680 line2y 48681 itsclc0 48697 itsclc0b 48698 itsclinecirc0 48699 itsclinecirc0b 48700 itsclinecirc0in 48701 itscnhlinecirc02plem3 48710 itscnhlinecirc02p 48711 inlinecirc02plem 48712 inlinecirc02p 48713 | 
| Copyright terms: Public domain | W3C validator |