| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pyel | Structured version Visualization version GIF version | ||
| Description: The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx2px.i | ⊢ 𝐼 = {1, 2} |
| rrx2px.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| rrx2pyel | ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx2px.b | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 2 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
| 3 | 2ex 12239 | . . . . 5 ⊢ 2 ∈ V | |
| 4 | 3 | prid2 4723 | . . . 4 ⊢ 2 ∈ {1, 2} |
| 5 | rrx2px.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 6 | 4, 5 | eleqtrri 2827 | . . 3 ⊢ 2 ∈ 𝐼 |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑃 → 2 ∈ 𝐼) |
| 8 | 1, 2, 7 | mapfvd 8829 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cpr 4587 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℝcr 11043 1c1 11045 2c2 12217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-2 12225 |
| This theorem is referenced by: rrx2pnedifcoorneor 48678 rrx2pnedifcoorneorr 48679 ehl2eudisval0 48687 ehl2eudis0lt 48688 rrx2vlinest 48703 rrx2linest 48704 rrx2linest2 48706 2sphere 48711 2sphere0 48712 line2 48714 line2x 48716 line2y 48717 itsclc0 48733 itsclc0b 48734 itsclinecirc0 48735 itsclinecirc0b 48736 itsclinecirc0in 48737 itscnhlinecirc02plem3 48746 itscnhlinecirc02p 48747 inlinecirc02plem 48748 inlinecirc02p 48749 |
| Copyright terms: Public domain | W3C validator |