| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pyel | Structured version Visualization version GIF version | ||
| Description: The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx2px.i | ⊢ 𝐼 = {1, 2} |
| rrx2px.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| rrx2pyel | ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx2px.b | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 2 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
| 3 | 2ex 12224 | . . . . 5 ⊢ 2 ∈ V | |
| 4 | 3 | prid2 4717 | . . . 4 ⊢ 2 ∈ {1, 2} |
| 5 | rrx2px.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 6 | 4, 5 | eleqtrri 2827 | . . 3 ⊢ 2 ∈ 𝐼 |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑃 → 2 ∈ 𝐼) |
| 8 | 1, 2, 7 | mapfvd 8813 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cpr 4581 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 ℝcr 11027 1c1 11029 2c2 12202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-2 12210 |
| This theorem is referenced by: rrx2pnedifcoorneor 48721 rrx2pnedifcoorneorr 48722 ehl2eudisval0 48730 ehl2eudis0lt 48731 rrx2vlinest 48746 rrx2linest 48747 rrx2linest2 48749 2sphere 48754 2sphere0 48755 line2 48757 line2x 48759 line2y 48760 itsclc0 48776 itsclc0b 48777 itsclinecirc0 48778 itsclinecirc0b 48779 itsclinecirc0in 48780 itscnhlinecirc02plem3 48789 itscnhlinecirc02p 48790 inlinecirc02plem 48791 inlinecirc02p 48792 |
| Copyright terms: Public domain | W3C validator |