Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pyel | Structured version Visualization version GIF version |
Description: The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) |
Ref | Expression |
---|---|
rrx2px.i | ⊢ 𝐼 = {1, 2} |
rrx2px.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
Ref | Expression |
---|---|
rrx2pyel | ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2px.b | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
2 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
3 | 2ex 11980 | . . . . 5 ⊢ 2 ∈ V | |
4 | 3 | prid2 4696 | . . . 4 ⊢ 2 ∈ {1, 2} |
5 | rrx2px.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
6 | 4, 5 | eleqtrri 2838 | . . 3 ⊢ 2 ∈ 𝐼 |
7 | 6 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑃 → 2 ∈ 𝐼) |
8 | 1, 2, 7 | mapfvd 8625 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cpr 4560 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℝcr 10801 1c1 10803 2c2 11958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-2 11966 |
This theorem is referenced by: rrx2pnedifcoorneor 45950 rrx2pnedifcoorneorr 45951 ehl2eudisval0 45959 ehl2eudis0lt 45960 rrx2vlinest 45975 rrx2linest 45976 rrx2linest2 45978 2sphere 45983 2sphere0 45984 line2 45986 line2x 45988 line2y 45989 itsclc0 46005 itsclc0b 46006 itsclinecirc0 46007 itsclinecirc0b 46008 itsclinecirc0in 46009 itscnhlinecirc02plem3 46018 itscnhlinecirc02p 46019 inlinecirc02plem 46020 inlinecirc02p 46021 |
Copyright terms: Public domain | W3C validator |