Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arympt1 Structured version   Visualization version   GIF version

Theorem 1arympt1 48670
Description: A unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.)
Hypothesis
Ref Expression
1arympt1.f 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0)))
Assertion
Ref Expression
1arympt1 ((𝑋𝑉𝐴:𝑋𝑋) → 𝐹 ∈ (1-aryF 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem 1arympt1
StepHypRef Expression
1 eqid 2731 . . . . . 6 (𝑋m {0}) = (𝑋m {0})
2 id 22 . . . . . 6 (𝑥 ∈ (𝑋m {0}) → 𝑥 ∈ (𝑋m {0}))
3 c0ex 11101 . . . . . . . 8 0 ∈ V
43snid 4610 . . . . . . 7 0 ∈ {0}
54a1i 11 . . . . . 6 (𝑥 ∈ (𝑋m {0}) → 0 ∈ {0})
61, 2, 5mapfvd 8798 . . . . 5 (𝑥 ∈ (𝑋m {0}) → (𝑥‘0) ∈ 𝑋)
7 ffvelcdm 7009 . . . . 5 ((𝐴:𝑋𝑋 ∧ (𝑥‘0) ∈ 𝑋) → (𝐴‘(𝑥‘0)) ∈ 𝑋)
86, 7sylan2 593 . . . 4 ((𝐴:𝑋𝑋𝑥 ∈ (𝑋m {0})) → (𝐴‘(𝑥‘0)) ∈ 𝑋)
9 1arympt1.f . . . 4 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0)))
108, 9fmptd 7042 . . 3 (𝐴:𝑋𝑋𝐹:(𝑋m {0})⟶𝑋)
11 1aryfvalel 48668 . . 3 (𝑋𝑉 → (𝐹 ∈ (1-aryF 𝑋) ↔ 𝐹:(𝑋m {0})⟶𝑋))
1210, 11imbitrrid 246 . 2 (𝑋𝑉 → (𝐴:𝑋𝑋𝐹 ∈ (1-aryF 𝑋)))
1312imp 406 1 ((𝑋𝑉𝐴:𝑋𝑋) → 𝐹 ∈ (1-aryF 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4571  cmpt 5167  wf 6472  cfv 6476  (class class class)co 7341  m cmap 8745  0cc0 11001  1c1 11002  -aryF cnaryf 48658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-naryf 48659
This theorem is referenced by:  1arymaptfo  48675
  Copyright terms: Public domain W3C validator