Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arympt1 Structured version   Visualization version   GIF version

Theorem 1arympt1 48598
Description: A unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.)
Hypothesis
Ref Expression
1arympt1.f 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0)))
Assertion
Ref Expression
1arympt1 ((𝑋𝑉𝐴:𝑋𝑋) → 𝐹 ∈ (1-aryF 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem 1arympt1
StepHypRef Expression
1 eqid 2736 . . . . . 6 (𝑋m {0}) = (𝑋m {0})
2 id 22 . . . . . 6 (𝑥 ∈ (𝑋m {0}) → 𝑥 ∈ (𝑋m {0}))
3 c0ex 11234 . . . . . . . 8 0 ∈ V
43snid 4643 . . . . . . 7 0 ∈ {0}
54a1i 11 . . . . . 6 (𝑥 ∈ (𝑋m {0}) → 0 ∈ {0})
61, 2, 5mapfvd 8898 . . . . 5 (𝑥 ∈ (𝑋m {0}) → (𝑥‘0) ∈ 𝑋)
7 ffvelcdm 7076 . . . . 5 ((𝐴:𝑋𝑋 ∧ (𝑥‘0) ∈ 𝑋) → (𝐴‘(𝑥‘0)) ∈ 𝑋)
86, 7sylan2 593 . . . 4 ((𝐴:𝑋𝑋𝑥 ∈ (𝑋m {0})) → (𝐴‘(𝑥‘0)) ∈ 𝑋)
9 1arympt1.f . . . 4 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0)))
108, 9fmptd 7109 . . 3 (𝐴:𝑋𝑋𝐹:(𝑋m {0})⟶𝑋)
11 1aryfvalel 48596 . . 3 (𝑋𝑉 → (𝐹 ∈ (1-aryF 𝑋) ↔ 𝐹:(𝑋m {0})⟶𝑋))
1210, 11imbitrrid 246 . 2 (𝑋𝑉 → (𝐴:𝑋𝑋𝐹 ∈ (1-aryF 𝑋)))
1312imp 406 1 ((𝑋𝑉𝐴:𝑋𝑋) → 𝐹 ∈ (1-aryF 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4606  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  0cc0 11134  1c1 11135  -aryF cnaryf 48586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-naryf 48587
This theorem is referenced by:  1arymaptfo  48603
  Copyright terms: Public domain W3C validator