Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arympt1 Structured version   Visualization version   GIF version

Theorem 1arympt1 45984
Description: A unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.)
Hypothesis
Ref Expression
1arympt1.f 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0)))
Assertion
Ref Expression
1arympt1 ((𝑋𝑉𝐴:𝑋𝑋) → 𝐹 ∈ (1-aryF 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem 1arympt1
StepHypRef Expression
1 eqid 2738 . . . . . 6 (𝑋m {0}) = (𝑋m {0})
2 id 22 . . . . . 6 (𝑥 ∈ (𝑋m {0}) → 𝑥 ∈ (𝑋m {0}))
3 c0ex 10969 . . . . . . . 8 0 ∈ V
43snid 4597 . . . . . . 7 0 ∈ {0}
54a1i 11 . . . . . 6 (𝑥 ∈ (𝑋m {0}) → 0 ∈ {0})
61, 2, 5mapfvd 8667 . . . . 5 (𝑥 ∈ (𝑋m {0}) → (𝑥‘0) ∈ 𝑋)
7 ffvelrn 6959 . . . . 5 ((𝐴:𝑋𝑋 ∧ (𝑥‘0) ∈ 𝑋) → (𝐴‘(𝑥‘0)) ∈ 𝑋)
86, 7sylan2 593 . . . 4 ((𝐴:𝑋𝑋𝑥 ∈ (𝑋m {0})) → (𝐴‘(𝑥‘0)) ∈ 𝑋)
9 1arympt1.f . . . 4 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0)))
108, 9fmptd 6988 . . 3 (𝐴:𝑋𝑋𝐹:(𝑋m {0})⟶𝑋)
11 1aryfvalel 45982 . . 3 (𝑋𝑉 → (𝐹 ∈ (1-aryF 𝑋) ↔ 𝐹:(𝑋m {0})⟶𝑋))
1210, 11syl5ibr 245 . 2 (𝑋𝑉 → (𝐴:𝑋𝑋𝐹 ∈ (1-aryF 𝑋)))
1312imp 407 1 ((𝑋𝑉𝐴:𝑋𝑋) → 𝐹 ∈ (1-aryF 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  0cc0 10871  1c1 10872  -aryF cnaryf 45972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-naryf 45973
This theorem is referenced by:  1arymaptfo  45989
  Copyright terms: Public domain W3C validator