Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofaddmndmap Structured version   Visualization version   GIF version

Theorem ofaddmndmap 48331
Description: The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019.)
Hypotheses
Ref Expression
ofaddmndmap.r 𝑅 = (Base‘𝑀)
ofaddmndmap.p + = (+g𝑀)
Assertion
Ref Expression
ofaddmndmap ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵) ∈ (𝑅m 𝑉))

Proof of Theorem ofaddmndmap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑀 ∈ Mnd)
2 simprl 770 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
3 simprr 772 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
4 ofaddmndmap.r . . . . 5 𝑅 = (Base‘𝑀)
5 ofaddmndmap.p . . . . 5 + = (+g𝑀)
64, 5mndcl 18669 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑥𝑅𝑦𝑅) → (𝑥 + 𝑦) ∈ 𝑅)
71, 2, 3, 6syl3anc 1373 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥 + 𝑦) ∈ 𝑅)
8 elmapi 8822 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
98adantr 480 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐴:𝑉𝑅)
1093ad2ant3 1135 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐴:𝑉𝑅)
11 elmapi 8822 . . . . 5 (𝐵 ∈ (𝑅m 𝑉) → 𝐵:𝑉𝑅)
1211adantl 481 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐵:𝑉𝑅)
13123ad2ant3 1135 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵:𝑉𝑅)
14 simp2 1137 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝑉𝑌)
15 inidm 4190 . . 3 (𝑉𝑉) = 𝑉
167, 10, 13, 14, 14, 15off 7671 . 2 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵):𝑉𝑅)
174fvexi 6872 . . 3 𝑅 ∈ V
18 elmapg 8812 . . 3 ((𝑅 ∈ V ∧ 𝑉𝑌) → ((𝐴f + 𝐵) ∈ (𝑅m 𝑉) ↔ (𝐴f + 𝐵):𝑉𝑅))
1917, 14, 18sylancr 587 . 2 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f + 𝐵) ∈ (𝑅m 𝑉) ↔ (𝐴f + 𝐵):𝑉𝑅))
2016, 19mpbird 257 1 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵) ∈ (𝑅m 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Basecbs 17179  +gcplusg 17220  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-1st 7968  df-2nd 7969  df-map 8801  df-mgm 18567  df-sgrp 18646  df-mnd 18662
This theorem is referenced by:  lincsumcl  48420
  Copyright terms: Public domain W3C validator