| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofaddmndmap | Structured version Visualization version GIF version | ||
| Description: The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| ofaddmndmap.r | ⊢ 𝑅 = (Base‘𝑀) |
| ofaddmndmap.p | ⊢ + = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| ofaddmndmap | ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑀 ∈ Mnd) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) | |
| 3 | simprr 772 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) | |
| 4 | ofaddmndmap.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑀) | |
| 5 | ofaddmndmap.p | . . . . 5 ⊢ + = (+g‘𝑀) | |
| 6 | 4, 5 | mndcl 18658 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥 + 𝑦) ∈ 𝑅) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥 + 𝑦) ∈ 𝑅) |
| 8 | elmapi 8782 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐴:𝑉⟶𝑅) |
| 10 | 9 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝐴:𝑉⟶𝑅) |
| 11 | elmapi 8782 | . . . . 5 ⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) → 𝐵:𝑉⟶𝑅) | |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐵:𝑉⟶𝑅) |
| 13 | 12 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝐵:𝑉⟶𝑅) |
| 14 | simp2 1137 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝑉 ∈ 𝑌) | |
| 15 | inidm 4176 | . . 3 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
| 16 | 7, 10, 13, 14, 14, 15 | off 7637 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 ∘f + 𝐵):𝑉⟶𝑅) |
| 17 | 4 | fvexi 6845 | . . 3 ⊢ 𝑅 ∈ V |
| 18 | elmapg 8772 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑉 ∈ 𝑌) → ((𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉) ↔ (𝐴 ∘f + 𝐵):𝑉⟶𝑅)) | |
| 19 | 17, 14, 18 | sylancr 587 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → ((𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉) ↔ (𝐴 ∘f + 𝐵):𝑉⟶𝑅)) |
| 20 | 16, 19 | mpbird 257 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 ↑m cmap 8759 Basecbs 17127 +gcplusg 17168 Mndcmnd 18650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-1st 7930 df-2nd 7931 df-map 8761 df-mgm 18556 df-sgrp 18635 df-mnd 18651 |
| This theorem is referenced by: lincsumcl 48593 |
| Copyright terms: Public domain | W3C validator |