Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofaddmndmap Structured version   Visualization version   GIF version

Theorem ofaddmndmap 47009
Description: The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019.)
Hypotheses
Ref Expression
ofaddmndmap.r 𝑅 = (Base‘𝑀)
ofaddmndmap.p + = (+g𝑀)
Assertion
Ref Expression
ofaddmndmap ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵) ∈ (𝑅m 𝑉))

Proof of Theorem ofaddmndmap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑀 ∈ Mnd)
2 simprl 769 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
3 simprr 771 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
4 ofaddmndmap.r . . . . 5 𝑅 = (Base‘𝑀)
5 ofaddmndmap.p . . . . 5 + = (+g𝑀)
64, 5mndcl 18632 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑥𝑅𝑦𝑅) → (𝑥 + 𝑦) ∈ 𝑅)
71, 2, 3, 6syl3anc 1371 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥 + 𝑦) ∈ 𝑅)
8 elmapi 8842 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
98adantr 481 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐴:𝑉𝑅)
1093ad2ant3 1135 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐴:𝑉𝑅)
11 elmapi 8842 . . . . 5 (𝐵 ∈ (𝑅m 𝑉) → 𝐵:𝑉𝑅)
1211adantl 482 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐵:𝑉𝑅)
13123ad2ant3 1135 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵:𝑉𝑅)
14 simp2 1137 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝑉𝑌)
15 inidm 4218 . . 3 (𝑉𝑉) = 𝑉
167, 10, 13, 14, 14, 15off 7687 . 2 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵):𝑉𝑅)
174fvexi 6905 . . 3 𝑅 ∈ V
18 elmapg 8832 . . 3 ((𝑅 ∈ V ∧ 𝑉𝑌) → ((𝐴f + 𝐵) ∈ (𝑅m 𝑉) ↔ (𝐴f + 𝐵):𝑉𝑅))
1917, 14, 18sylancr 587 . 2 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f + 𝐵) ∈ (𝑅m 𝑉) ↔ (𝐴f + 𝐵):𝑉𝑅))
2016, 19mpbird 256 1 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵) ∈ (𝑅m 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474  wf 6539  cfv 6543  (class class class)co 7408  f cof 7667  m cmap 8819  Basecbs 17143  +gcplusg 17196  Mndcmnd 18624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-1st 7974  df-2nd 7975  df-map 8821  df-mgm 18560  df-sgrp 18609  df-mnd 18625
This theorem is referenced by:  lincsumcl  47102
  Copyright terms: Public domain W3C validator