|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofaddmndmap | Structured version Visualization version GIF version | ||
| Description: The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019.) | 
| Ref | Expression | 
|---|---|
| ofaddmndmap.r | ⊢ 𝑅 = (Base‘𝑀) | 
| ofaddmndmap.p | ⊢ + = (+g‘𝑀) | 
| Ref | Expression | 
|---|---|
| ofaddmndmap | ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl1 1191 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑀 ∈ Mnd) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) | |
| 3 | simprr 772 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) | |
| 4 | ofaddmndmap.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑀) | |
| 5 | ofaddmndmap.p | . . . . 5 ⊢ + = (+g‘𝑀) | |
| 6 | 4, 5 | mndcl 18756 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥 + 𝑦) ∈ 𝑅) | 
| 7 | 1, 2, 3, 6 | syl3anc 1372 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥 + 𝑦) ∈ 𝑅) | 
| 8 | elmapi 8890 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐴:𝑉⟶𝑅) | 
| 10 | 9 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝐴:𝑉⟶𝑅) | 
| 11 | elmapi 8890 | . . . . 5 ⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) → 𝐵:𝑉⟶𝑅) | |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐵:𝑉⟶𝑅) | 
| 13 | 12 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝐵:𝑉⟶𝑅) | 
| 14 | simp2 1137 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝑉 ∈ 𝑌) | |
| 15 | inidm 4226 | . . 3 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
| 16 | 7, 10, 13, 14, 14, 15 | off 7716 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 ∘f + 𝐵):𝑉⟶𝑅) | 
| 17 | 4 | fvexi 6919 | . . 3 ⊢ 𝑅 ∈ V | 
| 18 | elmapg 8880 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑉 ∈ 𝑌) → ((𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉) ↔ (𝐴 ∘f + 𝐵):𝑉⟶𝑅)) | |
| 19 | 17, 14, 18 | sylancr 587 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → ((𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉) ↔ (𝐴 ∘f + 𝐵):𝑉⟶𝑅)) | 
| 20 | 16, 19 | mpbird 257 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ∘f cof 7696 ↑m cmap 8867 Basecbs 17248 +gcplusg 17298 Mndcmnd 18748 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-1st 8015 df-2nd 8016 df-map 8869 df-mgm 18654 df-sgrp 18733 df-mnd 18749 | 
| This theorem is referenced by: lincsumcl 48353 | 
| Copyright terms: Public domain | W3C validator |