![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofaddmndmap | Structured version Visualization version GIF version |
Description: The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
ofaddmndmap.r | ⊢ 𝑅 = (Base‘𝑀) |
ofaddmndmap.p | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
ofaddmndmap | ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1192 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑀 ∈ Mnd) | |
2 | simprl 770 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) | |
3 | simprr 772 | . . . 4 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) | |
4 | ofaddmndmap.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑀) | |
5 | ofaddmndmap.p | . . . . 5 ⊢ + = (+g‘𝑀) | |
6 | 4, 5 | mndcl 18572 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥 + 𝑦) ∈ 𝑅) |
7 | 1, 2, 3, 6 | syl3anc 1372 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥 + 𝑦) ∈ 𝑅) |
8 | elmapi 8793 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) | |
9 | 8 | adantr 482 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐴:𝑉⟶𝑅) |
10 | 9 | 3ad2ant3 1136 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝐴:𝑉⟶𝑅) |
11 | elmapi 8793 | . . . . 5 ⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) → 𝐵:𝑉⟶𝑅) | |
12 | 11 | adantl 483 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐵:𝑉⟶𝑅) |
13 | 12 | 3ad2ant3 1136 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝐵:𝑉⟶𝑅) |
14 | simp2 1138 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝑉 ∈ 𝑌) | |
15 | inidm 4182 | . . 3 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
16 | 7, 10, 13, 14, 14, 15 | off 7639 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 ∘f + 𝐵):𝑉⟶𝑅) |
17 | 4 | fvexi 6860 | . . 3 ⊢ 𝑅 ∈ V |
18 | elmapg 8784 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑉 ∈ 𝑌) → ((𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉) ↔ (𝐴 ∘f + 𝐵):𝑉⟶𝑅)) | |
19 | 17, 14, 18 | sylancr 588 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → ((𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉) ↔ (𝐴 ∘f + 𝐵):𝑉⟶𝑅)) |
20 | 16, 19 | mpbird 257 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ⟶wf 6496 ‘cfv 6500 (class class class)co 7361 ∘f cof 7619 ↑m cmap 8771 Basecbs 17091 +gcplusg 17141 Mndcmnd 18564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-of 7621 df-1st 7925 df-2nd 7926 df-map 8773 df-mgm 18505 df-sgrp 18554 df-mnd 18565 |
This theorem is referenced by: lincsumcl 46602 |
Copyright terms: Public domain | W3C validator |