Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofaddmndmap Structured version   Visualization version   GIF version

Theorem ofaddmndmap 48068
Description: The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019.)
Hypotheses
Ref Expression
ofaddmndmap.r 𝑅 = (Base‘𝑀)
ofaddmndmap.p + = (+g𝑀)
Assertion
Ref Expression
ofaddmndmap ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵) ∈ (𝑅m 𝑉))

Proof of Theorem ofaddmndmap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑀 ∈ Mnd)
2 simprl 770 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
3 simprr 772 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
4 ofaddmndmap.r . . . . 5 𝑅 = (Base‘𝑀)
5 ofaddmndmap.p . . . . 5 + = (+g𝑀)
64, 5mndcl 18780 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑥𝑅𝑦𝑅) → (𝑥 + 𝑦) ∈ 𝑅)
71, 2, 3, 6syl3anc 1371 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥 + 𝑦) ∈ 𝑅)
8 elmapi 8907 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
98adantr 480 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐴:𝑉𝑅)
1093ad2ant3 1135 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐴:𝑉𝑅)
11 elmapi 8907 . . . . 5 (𝐵 ∈ (𝑅m 𝑉) → 𝐵:𝑉𝑅)
1211adantl 481 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐵:𝑉𝑅)
13123ad2ant3 1135 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵:𝑉𝑅)
14 simp2 1137 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝑉𝑌)
15 inidm 4248 . . 3 (𝑉𝑉) = 𝑉
167, 10, 13, 14, 14, 15off 7732 . 2 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵):𝑉𝑅)
174fvexi 6934 . . 3 𝑅 ∈ V
18 elmapg 8897 . . 3 ((𝑅 ∈ V ∧ 𝑉𝑌) → ((𝐴f + 𝐵) ∈ (𝑅m 𝑉) ↔ (𝐴f + 𝐵):𝑉𝑅))
1917, 14, 18sylancr 586 . 2 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f + 𝐵) ∈ (𝑅m 𝑉) ↔ (𝐴f + 𝐵):𝑉𝑅))
2016, 19mpbird 257 1 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵) ∈ (𝑅m 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Basecbs 17258  +gcplusg 17311  Mndcmnd 18772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-1st 8030  df-2nd 8031  df-map 8886  df-mgm 18678  df-sgrp 18757  df-mnd 18773
This theorem is referenced by:  lincsumcl  48160
  Copyright terms: Public domain W3C validator