Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofaddmndmap Structured version   Visualization version   GIF version

Theorem ofaddmndmap 48188
Description: The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019.)
Hypotheses
Ref Expression
ofaddmndmap.r 𝑅 = (Base‘𝑀)
ofaddmndmap.p + = (+g𝑀)
Assertion
Ref Expression
ofaddmndmap ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵) ∈ (𝑅m 𝑉))

Proof of Theorem ofaddmndmap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑀 ∈ Mnd)
2 simprl 771 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
3 simprr 773 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
4 ofaddmndmap.r . . . . 5 𝑅 = (Base‘𝑀)
5 ofaddmndmap.p . . . . 5 + = (+g𝑀)
64, 5mndcl 18768 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑥𝑅𝑦𝑅) → (𝑥 + 𝑦) ∈ 𝑅)
71, 2, 3, 6syl3anc 1370 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥 + 𝑦) ∈ 𝑅)
8 elmapi 8888 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
98adantr 480 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐴:𝑉𝑅)
1093ad2ant3 1134 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐴:𝑉𝑅)
11 elmapi 8888 . . . . 5 (𝐵 ∈ (𝑅m 𝑉) → 𝐵:𝑉𝑅)
1211adantl 481 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐵:𝑉𝑅)
13123ad2ant3 1134 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵:𝑉𝑅)
14 simp2 1136 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝑉𝑌)
15 inidm 4235 . . 3 (𝑉𝑉) = 𝑉
167, 10, 13, 14, 14, 15off 7715 . 2 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵):𝑉𝑅)
174fvexi 6921 . . 3 𝑅 ∈ V
18 elmapg 8878 . . 3 ((𝑅 ∈ V ∧ 𝑉𝑌) → ((𝐴f + 𝐵) ∈ (𝑅m 𝑉) ↔ (𝐴f + 𝐵):𝑉𝑅))
1917, 14, 18sylancr 587 . 2 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f + 𝐵) ∈ (𝑅m 𝑉) ↔ (𝐴f + 𝐵):𝑉𝑅))
2016, 19mpbird 257 1 ((𝑀 ∈ Mnd ∧ 𝑉𝑌 ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f + 𝐵) ∈ (𝑅m 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  m cmap 8865  Basecbs 17245  +gcplusg 17298  Mndcmnd 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-1st 8013  df-2nd 8014  df-map 8867  df-mgm 18666  df-sgrp 18745  df-mnd 18761
This theorem is referenced by:  lincsumcl  48277
  Copyright terms: Public domain W3C validator