Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalsng Structured version   Visualization version   GIF version

Theorem lincvalsng 48333
Description: The linear combination over a singleton. (Contributed by AV, 25-May-2019.)
Hypotheses
Ref Expression
lincvalsn.b 𝐵 = (Base‘𝑀)
lincvalsn.s 𝑆 = (Scalar‘𝑀)
lincvalsn.r 𝑅 = (Base‘𝑆)
lincvalsn.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
lincvalsng ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉))

Proof of Theorem lincvalsng
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑀 ∈ LMod)
2 simp2 1138 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑉𝐵)
3 lincvalsn.r . . . . . . . 8 𝑅 = (Base‘𝑆)
4 lincvalsn.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
54fveq2i 6909 . . . . . . . 8 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
63, 5eqtri 2765 . . . . . . 7 𝑅 = (Base‘(Scalar‘𝑀))
76eleq2i 2833 . . . . . 6 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
87biimpi 216 . . . . 5 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
983ad2ant3 1136 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑌 ∈ (Base‘(Scalar‘𝑀)))
10 fvexd 6921 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (Base‘(Scalar‘𝑀)) ∈ V)
11 eqid 2737 . . . . 5 {⟨𝑉, 𝑌⟩} = {⟨𝑉, 𝑌⟩}
1211mapsnop 48260 . . . 4 ((𝑉𝐵𝑌 ∈ (Base‘(Scalar‘𝑀)) ∧ (Base‘(Scalar‘𝑀)) ∈ V) → {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}))
132, 9, 10, 12syl3anc 1373 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}))
14 snelpwi 5448 . . . . 5 (𝑉 ∈ (Base‘𝑀) → {𝑉} ∈ 𝒫 (Base‘𝑀))
15 lincvalsn.b . . . . 5 𝐵 = (Base‘𝑀)
1614, 15eleq2s 2859 . . . 4 (𝑉𝐵 → {𝑉} ∈ 𝒫 (Base‘𝑀))
17163ad2ant2 1135 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → {𝑉} ∈ 𝒫 (Base‘𝑀))
18 lincval 48326 . . 3 ((𝑀 ∈ LMod ∧ {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}) ∧ {𝑉} ∈ 𝒫 (Base‘𝑀)) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))))
191, 13, 17, 18syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))))
20 lmodgrp 20865 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2120grpmndd 18964 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
22213ad2ant1 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑀 ∈ Mnd)
23 fvsng 7200 . . . . . 6 ((𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩}‘𝑉) = 𝑌)
24233adant1 1131 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩}‘𝑉) = 𝑌)
2524oveq1d 7446 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) = (𝑌( ·𝑠𝑀)𝑉))
26 eqid 2737 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
2715, 4, 26, 3lmodvscl 20876 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑌𝑅𝑉𝐵) → (𝑌( ·𝑠𝑀)𝑉) ∈ 𝐵)
28273com23 1127 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (𝑌( ·𝑠𝑀)𝑉) ∈ 𝐵)
2925, 28eqeltrd 2841 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
30 fveq2 6906 . . . . 5 (𝑣 = 𝑉 → ({⟨𝑉, 𝑌⟩}‘𝑣) = ({⟨𝑉, 𝑌⟩}‘𝑉))
31 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
3230, 31oveq12d 7449 . . . 4 (𝑣 = 𝑉 → (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
3315, 32gsumsn 19972 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝐵 ∧ (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
3422, 2, 29, 33syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
35 lincvalsn.t . . . . 5 · = ( ·𝑠𝑀)
3635eqcomi 2746 . . . 4 ( ·𝑠𝑀) = ·
3736a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ( ·𝑠𝑀) = · )
38 eqidd 2738 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑉 = 𝑉)
3937, 24, 38oveq123d 7452 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) = (𝑌 · 𝑉))
4019, 34, 393eqtrd 2781 1 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  𝒫 cpw 4600  {csn 4626  cop 4632  cmpt 5225  cfv 6561  (class class class)co 7431  m cmap 8866  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301   Σg cgsu 17485  Mndcmnd 18747  LModclmod 20858   linC clinc 48321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-mulg 19086  df-cntz 19335  df-lmod 20860  df-linc 48323
This theorem is referenced by:  lincvalsn  48334  snlindsntorlem  48387  ldepsnlinclem1  48422  ldepsnlinclem2  48423
  Copyright terms: Public domain W3C validator