Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalsng Structured version   Visualization version   GIF version

Theorem lincvalsng 48401
Description: The linear combination over a singleton. (Contributed by AV, 25-May-2019.)
Hypotheses
Ref Expression
lincvalsn.b 𝐵 = (Base‘𝑀)
lincvalsn.s 𝑆 = (Scalar‘𝑀)
lincvalsn.r 𝑅 = (Base‘𝑆)
lincvalsn.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
lincvalsng ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉))

Proof of Theorem lincvalsng
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑀 ∈ LMod)
2 simp2 1137 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑉𝐵)
3 lincvalsn.r . . . . . . . 8 𝑅 = (Base‘𝑆)
4 lincvalsn.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
54fveq2i 6825 . . . . . . . 8 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
63, 5eqtri 2752 . . . . . . 7 𝑅 = (Base‘(Scalar‘𝑀))
76eleq2i 2820 . . . . . 6 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
87biimpi 216 . . . . 5 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
983ad2ant3 1135 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑌 ∈ (Base‘(Scalar‘𝑀)))
10 fvexd 6837 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (Base‘(Scalar‘𝑀)) ∈ V)
11 eqid 2729 . . . . 5 {⟨𝑉, 𝑌⟩} = {⟨𝑉, 𝑌⟩}
1211mapsnop 48328 . . . 4 ((𝑉𝐵𝑌 ∈ (Base‘(Scalar‘𝑀)) ∧ (Base‘(Scalar‘𝑀)) ∈ V) → {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}))
132, 9, 10, 12syl3anc 1373 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}))
14 snelpwi 5386 . . . . 5 (𝑉 ∈ (Base‘𝑀) → {𝑉} ∈ 𝒫 (Base‘𝑀))
15 lincvalsn.b . . . . 5 𝐵 = (Base‘𝑀)
1614, 15eleq2s 2846 . . . 4 (𝑉𝐵 → {𝑉} ∈ 𝒫 (Base‘𝑀))
17163ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → {𝑉} ∈ 𝒫 (Base‘𝑀))
18 lincval 48394 . . 3 ((𝑀 ∈ LMod ∧ {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}) ∧ {𝑉} ∈ 𝒫 (Base‘𝑀)) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))))
191, 13, 17, 18syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))))
20 lmodgrp 20770 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2120grpmndd 18825 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
22213ad2ant1 1133 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑀 ∈ Mnd)
23 fvsng 7116 . . . . . 6 ((𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩}‘𝑉) = 𝑌)
24233adant1 1130 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩}‘𝑉) = 𝑌)
2524oveq1d 7364 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) = (𝑌( ·𝑠𝑀)𝑉))
26 eqid 2729 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
2715, 4, 26, 3lmodvscl 20781 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑌𝑅𝑉𝐵) → (𝑌( ·𝑠𝑀)𝑉) ∈ 𝐵)
28273com23 1126 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (𝑌( ·𝑠𝑀)𝑉) ∈ 𝐵)
2925, 28eqeltrd 2828 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
30 fveq2 6822 . . . . 5 (𝑣 = 𝑉 → ({⟨𝑉, 𝑌⟩}‘𝑣) = ({⟨𝑉, 𝑌⟩}‘𝑉))
31 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
3230, 31oveq12d 7367 . . . 4 (𝑣 = 𝑉 → (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
3315, 32gsumsn 19833 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝐵 ∧ (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
3422, 2, 29, 33syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
35 lincvalsn.t . . . . 5 · = ( ·𝑠𝑀)
3635eqcomi 2738 . . . 4 ( ·𝑠𝑀) = ·
3736a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ( ·𝑠𝑀) = · )
38 eqidd 2730 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑉 = 𝑉)
3937, 24, 38oveq123d 7370 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) = (𝑌 · 𝑉))
4019, 34, 393eqtrd 2768 1 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  𝒫 cpw 4551  {csn 4577  cop 4583  cmpt 5173  cfv 6482  (class class class)co 7349  m cmap 8753  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165   Σg cgsu 17344  Mndcmnd 18608  LModclmod 20763   linC clinc 48389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-mulg 18947  df-cntz 19196  df-lmod 20765  df-linc 48391
This theorem is referenced by:  lincvalsn  48402  snlindsntorlem  48455  ldepsnlinclem1  48490  ldepsnlinclem2  48491
  Copyright terms: Public domain W3C validator