Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalsng Structured version   Visualization version   GIF version

Theorem lincvalsng 48409
Description: The linear combination over a singleton. (Contributed by AV, 25-May-2019.)
Hypotheses
Ref Expression
lincvalsn.b 𝐵 = (Base‘𝑀)
lincvalsn.s 𝑆 = (Scalar‘𝑀)
lincvalsn.r 𝑅 = (Base‘𝑆)
lincvalsn.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
lincvalsng ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉))

Proof of Theorem lincvalsng
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑀 ∈ LMod)
2 simp2 1137 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑉𝐵)
3 lincvalsn.r . . . . . . . 8 𝑅 = (Base‘𝑆)
4 lincvalsn.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
54fveq2i 6864 . . . . . . . 8 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
63, 5eqtri 2753 . . . . . . 7 𝑅 = (Base‘(Scalar‘𝑀))
76eleq2i 2821 . . . . . 6 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
87biimpi 216 . . . . 5 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
983ad2ant3 1135 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑌 ∈ (Base‘(Scalar‘𝑀)))
10 fvexd 6876 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (Base‘(Scalar‘𝑀)) ∈ V)
11 eqid 2730 . . . . 5 {⟨𝑉, 𝑌⟩} = {⟨𝑉, 𝑌⟩}
1211mapsnop 48336 . . . 4 ((𝑉𝐵𝑌 ∈ (Base‘(Scalar‘𝑀)) ∧ (Base‘(Scalar‘𝑀)) ∈ V) → {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}))
132, 9, 10, 12syl3anc 1373 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}))
14 snelpwi 5406 . . . . 5 (𝑉 ∈ (Base‘𝑀) → {𝑉} ∈ 𝒫 (Base‘𝑀))
15 lincvalsn.b . . . . 5 𝐵 = (Base‘𝑀)
1614, 15eleq2s 2847 . . . 4 (𝑉𝐵 → {𝑉} ∈ 𝒫 (Base‘𝑀))
17163ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → {𝑉} ∈ 𝒫 (Base‘𝑀))
18 lincval 48402 . . 3 ((𝑀 ∈ LMod ∧ {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}) ∧ {𝑉} ∈ 𝒫 (Base‘𝑀)) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))))
191, 13, 17, 18syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))))
20 lmodgrp 20780 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2120grpmndd 18885 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
22213ad2ant1 1133 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑀 ∈ Mnd)
23 fvsng 7157 . . . . . 6 ((𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩}‘𝑉) = 𝑌)
24233adant1 1130 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩}‘𝑉) = 𝑌)
2524oveq1d 7405 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) = (𝑌( ·𝑠𝑀)𝑉))
26 eqid 2730 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
2715, 4, 26, 3lmodvscl 20791 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑌𝑅𝑉𝐵) → (𝑌( ·𝑠𝑀)𝑉) ∈ 𝐵)
28273com23 1126 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (𝑌( ·𝑠𝑀)𝑉) ∈ 𝐵)
2925, 28eqeltrd 2829 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
30 fveq2 6861 . . . . 5 (𝑣 = 𝑉 → ({⟨𝑉, 𝑌⟩}‘𝑣) = ({⟨𝑉, 𝑌⟩}‘𝑉))
31 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
3230, 31oveq12d 7408 . . . 4 (𝑣 = 𝑉 → (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
3315, 32gsumsn 19891 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝐵 ∧ (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
3422, 2, 29, 33syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
35 lincvalsn.t . . . . 5 · = ( ·𝑠𝑀)
3635eqcomi 2739 . . . 4 ( ·𝑠𝑀) = ·
3736a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ( ·𝑠𝑀) = · )
38 eqidd 2731 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑉 = 𝑉)
3937, 24, 38oveq123d 7411 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) = (𝑌 · 𝑉))
4019, 34, 393eqtrd 2769 1 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  𝒫 cpw 4566  {csn 4592  cop 4598  cmpt 5191  cfv 6514  (class class class)co 7390  m cmap 8802  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231   Σg cgsu 17410  Mndcmnd 18668  LModclmod 20773   linC clinc 48397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-mulg 19007  df-cntz 19256  df-lmod 20775  df-linc 48399
This theorem is referenced by:  lincvalsn  48410  snlindsntorlem  48463  ldepsnlinclem1  48498  ldepsnlinclem2  48499
  Copyright terms: Public domain W3C validator