Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalsng Structured version   Visualization version   GIF version

Theorem lincvalsng 48262
Description: The linear combination over a singleton. (Contributed by AV, 25-May-2019.)
Hypotheses
Ref Expression
lincvalsn.b 𝐵 = (Base‘𝑀)
lincvalsn.s 𝑆 = (Scalar‘𝑀)
lincvalsn.r 𝑅 = (Base‘𝑆)
lincvalsn.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
lincvalsng ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉))

Proof of Theorem lincvalsng
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑀 ∈ LMod)
2 simp2 1136 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑉𝐵)
3 lincvalsn.r . . . . . . . 8 𝑅 = (Base‘𝑆)
4 lincvalsn.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
54fveq2i 6910 . . . . . . . 8 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
63, 5eqtri 2763 . . . . . . 7 𝑅 = (Base‘(Scalar‘𝑀))
76eleq2i 2831 . . . . . 6 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
87biimpi 216 . . . . 5 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
983ad2ant3 1134 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑌 ∈ (Base‘(Scalar‘𝑀)))
10 fvexd 6922 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (Base‘(Scalar‘𝑀)) ∈ V)
11 eqid 2735 . . . . 5 {⟨𝑉, 𝑌⟩} = {⟨𝑉, 𝑌⟩}
1211mapsnop 48189 . . . 4 ((𝑉𝐵𝑌 ∈ (Base‘(Scalar‘𝑀)) ∧ (Base‘(Scalar‘𝑀)) ∈ V) → {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}))
132, 9, 10, 12syl3anc 1370 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}))
14 snelpwi 5454 . . . . 5 (𝑉 ∈ (Base‘𝑀) → {𝑉} ∈ 𝒫 (Base‘𝑀))
15 lincvalsn.b . . . . 5 𝐵 = (Base‘𝑀)
1614, 15eleq2s 2857 . . . 4 (𝑉𝐵 → {𝑉} ∈ 𝒫 (Base‘𝑀))
17163ad2ant2 1133 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → {𝑉} ∈ 𝒫 (Base‘𝑀))
18 lincval 48255 . . 3 ((𝑀 ∈ LMod ∧ {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}) ∧ {𝑉} ∈ 𝒫 (Base‘𝑀)) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))))
191, 13, 17, 18syl3anc 1370 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))))
20 lmodgrp 20882 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2120grpmndd 18977 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
22213ad2ant1 1132 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑀 ∈ Mnd)
23 fvsng 7200 . . . . . 6 ((𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩}‘𝑉) = 𝑌)
24233adant1 1129 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩}‘𝑉) = 𝑌)
2524oveq1d 7446 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) = (𝑌( ·𝑠𝑀)𝑉))
26 eqid 2735 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
2715, 4, 26, 3lmodvscl 20893 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑌𝑅𝑉𝐵) → (𝑌( ·𝑠𝑀)𝑉) ∈ 𝐵)
28273com23 1125 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (𝑌( ·𝑠𝑀)𝑉) ∈ 𝐵)
2925, 28eqeltrd 2839 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
30 fveq2 6907 . . . . 5 (𝑣 = 𝑉 → ({⟨𝑉, 𝑌⟩}‘𝑣) = ({⟨𝑉, 𝑌⟩}‘𝑉))
31 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
3230, 31oveq12d 7449 . . . 4 (𝑣 = 𝑉 → (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
3315, 32gsumsn 19987 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝐵 ∧ (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
3422, 2, 29, 33syl3anc 1370 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
35 lincvalsn.t . . . . 5 · = ( ·𝑠𝑀)
3635eqcomi 2744 . . . 4 ( ·𝑠𝑀) = ·
3736a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ( ·𝑠𝑀) = · )
38 eqidd 2736 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑉 = 𝑉)
3937, 24, 38oveq123d 7452 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) = (𝑌 · 𝑉))
4019, 34, 393eqtrd 2779 1 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  𝒫 cpw 4605  {csn 4631  cop 4637  cmpt 5231  cfv 6563  (class class class)co 7431  m cmap 8865  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302   Σg cgsu 17487  Mndcmnd 18760  LModclmod 20875   linC clinc 48250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-mulg 19099  df-cntz 19348  df-lmod 20877  df-linc 48252
This theorem is referenced by:  lincvalsn  48263  snlindsntorlem  48316  ldepsnlinclem1  48351  ldepsnlinclem2  48352
  Copyright terms: Public domain W3C validator