Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . 3
β’ ((π β LMod β§ π β π΅ β§ π β π
) β π β LMod) |
2 | | simp2 1136 |
. . . 4
β’ ((π β LMod β§ π β π΅ β§ π β π
) β π β π΅) |
3 | | lincvalsn.r |
. . . . . . . 8
β’ π
= (Baseβπ) |
4 | | lincvalsn.s |
. . . . . . . . 9
β’ π = (Scalarβπ) |
5 | 4 | fveq2i 6895 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβ(Scalarβπ)) |
6 | 3, 5 | eqtri 2759 |
. . . . . . 7
β’ π
=
(Baseβ(Scalarβπ)) |
7 | 6 | eleq2i 2824 |
. . . . . 6
β’ (π β π
β π β (Baseβ(Scalarβπ))) |
8 | 7 | biimpi 215 |
. . . . 5
β’ (π β π
β π β (Baseβ(Scalarβπ))) |
9 | 8 | 3ad2ant3 1134 |
. . . 4
β’ ((π β LMod β§ π β π΅ β§ π β π
) β π β (Baseβ(Scalarβπ))) |
10 | | fvexd 6907 |
. . . 4
β’ ((π β LMod β§ π β π΅ β§ π β π
) β (Baseβ(Scalarβπ)) β V) |
11 | | eqid 2731 |
. . . . 5
β’
{β¨π, πβ©} = {β¨π, πβ©} |
12 | 11 | mapsnop 47110 |
. . . 4
β’ ((π β π΅ β§ π β (Baseβ(Scalarβπ)) β§
(Baseβ(Scalarβπ)) β V) β {β¨π, πβ©} β
((Baseβ(Scalarβπ)) βm {π})) |
13 | 2, 9, 10, 12 | syl3anc 1370 |
. . 3
β’ ((π β LMod β§ π β π΅ β§ π β π
) β {β¨π, πβ©} β
((Baseβ(Scalarβπ)) βm {π})) |
14 | | snelpwi 5444 |
. . . . 5
β’ (π β (Baseβπ) β {π} β π« (Baseβπ)) |
15 | | lincvalsn.b |
. . . . 5
β’ π΅ = (Baseβπ) |
16 | 14, 15 | eleq2s 2850 |
. . . 4
β’ (π β π΅ β {π} β π« (Baseβπ)) |
17 | 16 | 3ad2ant2 1133 |
. . 3
β’ ((π β LMod β§ π β π΅ β§ π β π
) β {π} β π« (Baseβπ)) |
18 | | lincval 47179 |
. . 3
β’ ((π β LMod β§ {β¨π, πβ©} β
((Baseβ(Scalarβπ)) βm {π}) β§ {π} β π« (Baseβπ)) β ({β¨π, πβ©} ( linC βπ){π}) = (π Ξ£g (π£ β {π} β¦ (({β¨π, πβ©}βπ£)( Β·π
βπ)π£)))) |
19 | 1, 13, 17, 18 | syl3anc 1370 |
. 2
β’ ((π β LMod β§ π β π΅ β§ π β π
) β ({β¨π, πβ©} ( linC βπ){π}) = (π Ξ£g (π£ β {π} β¦ (({β¨π, πβ©}βπ£)( Β·π
βπ)π£)))) |
20 | | lmodgrp 20622 |
. . . . 5
β’ (π β LMod β π β Grp) |
21 | 20 | grpmndd 18869 |
. . . 4
β’ (π β LMod β π β Mnd) |
22 | 21 | 3ad2ant1 1132 |
. . 3
β’ ((π β LMod β§ π β π΅ β§ π β π
) β π β Mnd) |
23 | | fvsng 7181 |
. . . . . 6
β’ ((π β π΅ β§ π β π
) β ({β¨π, πβ©}βπ) = π) |
24 | 23 | 3adant1 1129 |
. . . . 5
β’ ((π β LMod β§ π β π΅ β§ π β π
) β ({β¨π, πβ©}βπ) = π) |
25 | 24 | oveq1d 7427 |
. . . 4
β’ ((π β LMod β§ π β π΅ β§ π β π
) β (({β¨π, πβ©}βπ)( Β·π
βπ)π) = (π( Β·π
βπ)π)) |
26 | | eqid 2731 |
. . . . . 6
β’ (
Β·π βπ) = ( Β·π
βπ) |
27 | 15, 4, 26, 3 | lmodvscl 20633 |
. . . . 5
β’ ((π β LMod β§ π β π
β§ π β π΅) β (π( Β·π
βπ)π) β π΅) |
28 | 27 | 3com23 1125 |
. . . 4
β’ ((π β LMod β§ π β π΅ β§ π β π
) β (π( Β·π
βπ)π) β π΅) |
29 | 25, 28 | eqeltrd 2832 |
. . 3
β’ ((π β LMod β§ π β π΅ β§ π β π
) β (({β¨π, πβ©}βπ)( Β·π
βπ)π) β π΅) |
30 | | fveq2 6892 |
. . . . 5
β’ (π£ = π β ({β¨π, πβ©}βπ£) = ({β¨π, πβ©}βπ)) |
31 | | id 22 |
. . . . 5
β’ (π£ = π β π£ = π) |
32 | 30, 31 | oveq12d 7430 |
. . . 4
β’ (π£ = π β (({β¨π, πβ©}βπ£)( Β·π
βπ)π£) = (({β¨π, πβ©}βπ)( Β·π
βπ)π)) |
33 | 15, 32 | gsumsn 19864 |
. . 3
β’ ((π β Mnd β§ π β π΅ β§ (({β¨π, πβ©}βπ)( Β·π
βπ)π) β π΅) β (π Ξ£g (π£ β {π} β¦ (({β¨π, πβ©}βπ£)( Β·π
βπ)π£))) = (({β¨π, πβ©}βπ)( Β·π
βπ)π)) |
34 | 22, 2, 29, 33 | syl3anc 1370 |
. 2
β’ ((π β LMod β§ π β π΅ β§ π β π
) β (π Ξ£g (π£ β {π} β¦ (({β¨π, πβ©}βπ£)( Β·π
βπ)π£))) = (({β¨π, πβ©}βπ)( Β·π
βπ)π)) |
35 | | lincvalsn.t |
. . . . 5
β’ Β· = (
Β·π βπ) |
36 | 35 | eqcomi 2740 |
. . . 4
β’ (
Β·π βπ) = Β· |
37 | 36 | a1i 11 |
. . 3
β’ ((π β LMod β§ π β π΅ β§ π β π
) β (
Β·π βπ) = Β· ) |
38 | | eqidd 2732 |
. . 3
β’ ((π β LMod β§ π β π΅ β§ π β π
) β π = π) |
39 | 37, 24, 38 | oveq123d 7433 |
. 2
β’ ((π β LMod β§ π β π΅ β§ π β π
) β (({β¨π, πβ©}βπ)( Β·π
βπ)π) = (π Β· π)) |
40 | 19, 34, 39 | 3eqtrd 2775 |
1
β’ ((π β LMod β§ π β π΅ β§ π β π
) β ({β¨π, πβ©} ( linC βπ){π}) = (π Β· π)) |