![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincvalsng | Structured version Visualization version GIF version |
Description: The linear combination over a singleton. (Contributed by AV, 25-May-2019.) |
Ref | Expression |
---|---|
lincvalsn.b | ⊢ 𝐵 = (Base‘𝑀) |
lincvalsn.s | ⊢ 𝑆 = (Scalar‘𝑀) |
lincvalsn.r | ⊢ 𝑅 = (Base‘𝑆) |
lincvalsn.t | ⊢ · = ( ·𝑠 ‘𝑀) |
Ref | Expression |
---|---|
lincvalsng | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑀 ∈ LMod) | |
2 | simp2 1137 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑉 ∈ 𝐵) | |
3 | lincvalsn.r | . . . . . . . 8 ⊢ 𝑅 = (Base‘𝑆) | |
4 | lincvalsn.s | . . . . . . . . 9 ⊢ 𝑆 = (Scalar‘𝑀) | |
5 | 4 | fveq2i 6923 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘(Scalar‘𝑀)) |
6 | 3, 5 | eqtri 2768 | . . . . . . 7 ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) |
7 | 6 | eleq2i 2836 | . . . . . 6 ⊢ (𝑌 ∈ 𝑅 ↔ 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
8 | 7 | biimpi 216 | . . . . 5 ⊢ (𝑌 ∈ 𝑅 → 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
9 | 8 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
10 | fvexd 6935 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (Base‘(Scalar‘𝑀)) ∈ V) | |
11 | eqid 2740 | . . . . 5 ⊢ {〈𝑉, 𝑌〉} = {〈𝑉, 𝑌〉} | |
12 | 11 | mapsnop 48069 | . . . 4 ⊢ ((𝑉 ∈ 𝐵 ∧ 𝑌 ∈ (Base‘(Scalar‘𝑀)) ∧ (Base‘(Scalar‘𝑀)) ∈ V) → {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉})) |
13 | 2, 9, 10, 12 | syl3anc 1371 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉})) |
14 | snelpwi 5463 | . . . . 5 ⊢ (𝑉 ∈ (Base‘𝑀) → {𝑉} ∈ 𝒫 (Base‘𝑀)) | |
15 | lincvalsn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
16 | 14, 15 | eleq2s 2862 | . . . 4 ⊢ (𝑉 ∈ 𝐵 → {𝑉} ∈ 𝒫 (Base‘𝑀)) |
17 | 16 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → {𝑉} ∈ 𝒫 (Base‘𝑀)) |
18 | lincval 48138 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}) ∧ {𝑉} ∈ 𝒫 (Base‘𝑀)) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
19 | 1, 13, 17, 18 | syl3anc 1371 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
20 | lmodgrp 20887 | . . . . 5 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
21 | 20 | grpmndd 18986 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
22 | 21 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑀 ∈ Mnd) |
23 | fvsng 7214 | . . . . . 6 ⊢ ((𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉}‘𝑉) = 𝑌) | |
24 | 23 | 3adant1 1130 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉}‘𝑉) = 𝑌) |
25 | 24 | oveq1d 7463 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) = (𝑌( ·𝑠 ‘𝑀)𝑉)) |
26 | eqid 2740 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
27 | 15, 4, 26, 3 | lmodvscl 20898 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑌 ∈ 𝑅 ∧ 𝑉 ∈ 𝐵) → (𝑌( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
28 | 27 | 3com23 1126 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (𝑌( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
29 | 25, 28 | eqeltrd 2844 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
30 | fveq2 6920 | . . . . 5 ⊢ (𝑣 = 𝑉 → ({〈𝑉, 𝑌〉}‘𝑣) = ({〈𝑉, 𝑌〉}‘𝑉)) | |
31 | id 22 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝑣 = 𝑉) | |
32 | 30, 31 | oveq12d 7466 | . . . 4 ⊢ (𝑣 = 𝑉 → (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
33 | 15, 32 | gsumsn 19996 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝐵 ∧ (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
34 | 22, 2, 29, 33 | syl3anc 1371 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
35 | lincvalsn.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑀) | |
36 | 35 | eqcomi 2749 | . . . 4 ⊢ ( ·𝑠 ‘𝑀) = · |
37 | 36 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ( ·𝑠 ‘𝑀) = · ) |
38 | eqidd 2741 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑉 = 𝑉) | |
39 | 37, 24, 38 | oveq123d 7469 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) = (𝑌 · 𝑉)) |
40 | 19, 34, 39 | 3eqtrd 2784 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 {csn 4648 〈cop 4654 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 Σg cgsu 17500 Mndcmnd 18772 LModclmod 20880 linC clinc 48133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-0g 17501 df-gsum 17502 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-mulg 19108 df-cntz 19357 df-lmod 20882 df-linc 48135 |
This theorem is referenced by: lincvalsn 48146 snlindsntorlem 48199 ldepsnlinclem1 48234 ldepsnlinclem2 48235 |
Copyright terms: Public domain | W3C validator |