| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincvalsng | Structured version Visualization version GIF version | ||
| Description: The linear combination over a singleton. (Contributed by AV, 25-May-2019.) |
| Ref | Expression |
|---|---|
| lincvalsn.b | ⊢ 𝐵 = (Base‘𝑀) |
| lincvalsn.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| lincvalsn.r | ⊢ 𝑅 = (Base‘𝑆) |
| lincvalsn.t | ⊢ · = ( ·𝑠 ‘𝑀) |
| Ref | Expression |
|---|---|
| lincvalsng | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑀 ∈ LMod) | |
| 2 | simp2 1137 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑉 ∈ 𝐵) | |
| 3 | lincvalsn.r | . . . . . . . 8 ⊢ 𝑅 = (Base‘𝑆) | |
| 4 | lincvalsn.s | . . . . . . . . 9 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 5 | 4 | fveq2i 6825 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘(Scalar‘𝑀)) |
| 6 | 3, 5 | eqtri 2752 | . . . . . . 7 ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) |
| 7 | 6 | eleq2i 2820 | . . . . . 6 ⊢ (𝑌 ∈ 𝑅 ↔ 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
| 8 | 7 | biimpi 216 | . . . . 5 ⊢ (𝑌 ∈ 𝑅 → 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
| 9 | 8 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
| 10 | fvexd 6837 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (Base‘(Scalar‘𝑀)) ∈ V) | |
| 11 | eqid 2729 | . . . . 5 ⊢ {〈𝑉, 𝑌〉} = {〈𝑉, 𝑌〉} | |
| 12 | 11 | mapsnop 48328 | . . . 4 ⊢ ((𝑉 ∈ 𝐵 ∧ 𝑌 ∈ (Base‘(Scalar‘𝑀)) ∧ (Base‘(Scalar‘𝑀)) ∈ V) → {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉})) |
| 13 | 2, 9, 10, 12 | syl3anc 1373 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉})) |
| 14 | snelpwi 5386 | . . . . 5 ⊢ (𝑉 ∈ (Base‘𝑀) → {𝑉} ∈ 𝒫 (Base‘𝑀)) | |
| 15 | lincvalsn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 16 | 14, 15 | eleq2s 2846 | . . . 4 ⊢ (𝑉 ∈ 𝐵 → {𝑉} ∈ 𝒫 (Base‘𝑀)) |
| 17 | 16 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → {𝑉} ∈ 𝒫 (Base‘𝑀)) |
| 18 | lincval 48394 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}) ∧ {𝑉} ∈ 𝒫 (Base‘𝑀)) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
| 19 | 1, 13, 17, 18 | syl3anc 1373 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
| 20 | lmodgrp 20770 | . . . . 5 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
| 21 | 20 | grpmndd 18825 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
| 22 | 21 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑀 ∈ Mnd) |
| 23 | fvsng 7116 | . . . . . 6 ⊢ ((𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉}‘𝑉) = 𝑌) | |
| 24 | 23 | 3adant1 1130 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉}‘𝑉) = 𝑌) |
| 25 | 24 | oveq1d 7364 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) = (𝑌( ·𝑠 ‘𝑀)𝑉)) |
| 26 | eqid 2729 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 27 | 15, 4, 26, 3 | lmodvscl 20781 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑌 ∈ 𝑅 ∧ 𝑉 ∈ 𝐵) → (𝑌( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
| 28 | 27 | 3com23 1126 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (𝑌( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
| 29 | 25, 28 | eqeltrd 2828 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
| 30 | fveq2 6822 | . . . . 5 ⊢ (𝑣 = 𝑉 → ({〈𝑉, 𝑌〉}‘𝑣) = ({〈𝑉, 𝑌〉}‘𝑉)) | |
| 31 | id 22 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝑣 = 𝑉) | |
| 32 | 30, 31 | oveq12d 7367 | . . . 4 ⊢ (𝑣 = 𝑉 → (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
| 33 | 15, 32 | gsumsn 19833 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝐵 ∧ (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
| 34 | 22, 2, 29, 33 | syl3anc 1373 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
| 35 | lincvalsn.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 36 | 35 | eqcomi 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝑀) = · |
| 37 | 36 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ( ·𝑠 ‘𝑀) = · ) |
| 38 | eqidd 2730 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑉 = 𝑉) | |
| 39 | 37, 24, 38 | oveq123d 7370 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) = (𝑌 · 𝑉)) |
| 40 | 19, 34, 39 | 3eqtrd 2768 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3436 𝒫 cpw 4551 {csn 4577 〈cop 4583 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 Σg cgsu 17344 Mndcmnd 18608 LModclmod 20763 linC clinc 48389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-0g 17345 df-gsum 17346 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-mulg 18947 df-cntz 19196 df-lmod 20765 df-linc 48391 |
| This theorem is referenced by: lincvalsn 48402 snlindsntorlem 48455 ldepsnlinclem1 48490 ldepsnlinclem2 48491 |
| Copyright terms: Public domain | W3C validator |