|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcosn0 | Structured version Visualization version GIF version | ||
| Description: Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| lincval1.b | ⊢ 𝐵 = (Base‘𝑀) | 
| lincval1.s | ⊢ 𝑆 = (Scalar‘𝑀) | 
| lincval1.r | ⊢ 𝑅 = (Base‘𝑆) | 
| lincval1.f | ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} | 
| Ref | Expression | 
|---|---|
| lcosn0 | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹 ∈ (𝑅 ↑m {𝑉}) ∧ 𝐹 finSupp (0g‘𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝑉 ∈ 𝐵) | |
| 2 | lincval1.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 3 | lincval1.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑆) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 5 | 2, 3, 4 | lmod0cl 20887 | . . . 4 ⊢ (𝑀 ∈ LMod → (0g‘𝑆) ∈ 𝑅) | 
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (0g‘𝑆) ∈ 𝑅) | 
| 7 | 3 | fvexi 6919 | . . . 4 ⊢ 𝑅 ∈ V | 
| 8 | 7 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝑅 ∈ V) | 
| 9 | lincval1.f | . . . 4 ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} | |
| 10 | 9 | mapsnop 48265 | . . 3 ⊢ ((𝑉 ∈ 𝐵 ∧ (0g‘𝑆) ∈ 𝑅 ∧ 𝑅 ∈ V) → 𝐹 ∈ (𝑅 ↑m {𝑉})) | 
| 11 | 1, 6, 8, 10 | syl3anc 1372 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝐹 ∈ (𝑅 ↑m {𝑉})) | 
| 12 | elmapi 8890 | . . . 4 ⊢ (𝐹 ∈ (𝑅 ↑m {𝑉}) → 𝐹:{𝑉}⟶𝑅) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝐹:{𝑉}⟶𝑅) | 
| 14 | snfi 9084 | . . . 4 ⊢ {𝑉} ∈ Fin | |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → {𝑉} ∈ Fin) | 
| 16 | fvex 6918 | . . . 4 ⊢ (0g‘𝑆) ∈ V | |
| 17 | 16 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (0g‘𝑆) ∈ V) | 
| 18 | 13, 15, 17 | fdmfifsupp 9416 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝐹 finSupp (0g‘𝑆)) | 
| 19 | lincval1.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 20 | 19, 2, 3, 9 | lincval1 48341 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀)) | 
| 21 | 11, 18, 20 | 3jca 1128 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹 ∈ (𝑅 ↑m {𝑉}) ∧ 𝐹 finSupp (0g‘𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3479 {csn 4625 〈cop 4631 class class class wbr 5142 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ↑m cmap 8867 Fincfn 8986 finSupp cfsupp 9402 Basecbs 17248 Scalarcsca 17301 0gc0g 17485 LModclmod 20859 linC clinc 48326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-0g 17487 df-gsum 17488 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-mulg 19087 df-cntz 19336 df-ring 20233 df-lmod 20861 df-linc 48328 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |