| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcosn0 | Structured version Visualization version GIF version | ||
| Description: Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| lincval1.b | ⊢ 𝐵 = (Base‘𝑀) |
| lincval1.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| lincval1.r | ⊢ 𝑅 = (Base‘𝑆) |
| lincval1.f | ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} |
| Ref | Expression |
|---|---|
| lcosn0 | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹 ∈ (𝑅 ↑m {𝑉}) ∧ 𝐹 finSupp (0g‘𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝑉 ∈ 𝐵) | |
| 2 | lincval1.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 3 | lincval1.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑆) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 5 | 2, 3, 4 | lmod0cl 20794 | . . . 4 ⊢ (𝑀 ∈ LMod → (0g‘𝑆) ∈ 𝑅) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (0g‘𝑆) ∈ 𝑅) |
| 7 | 3 | fvexi 6872 | . . . 4 ⊢ 𝑅 ∈ V |
| 8 | 7 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝑅 ∈ V) |
| 9 | lincval1.f | . . . 4 ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} | |
| 10 | 9 | mapsnop 48332 | . . 3 ⊢ ((𝑉 ∈ 𝐵 ∧ (0g‘𝑆) ∈ 𝑅 ∧ 𝑅 ∈ V) → 𝐹 ∈ (𝑅 ↑m {𝑉})) |
| 11 | 1, 6, 8, 10 | syl3anc 1373 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝐹 ∈ (𝑅 ↑m {𝑉})) |
| 12 | elmapi 8822 | . . . 4 ⊢ (𝐹 ∈ (𝑅 ↑m {𝑉}) → 𝐹:{𝑉}⟶𝑅) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝐹:{𝑉}⟶𝑅) |
| 14 | snfi 9014 | . . . 4 ⊢ {𝑉} ∈ Fin | |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → {𝑉} ∈ Fin) |
| 16 | fvex 6871 | . . . 4 ⊢ (0g‘𝑆) ∈ V | |
| 17 | 16 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (0g‘𝑆) ∈ V) |
| 18 | 13, 15, 17 | fdmfifsupp 9326 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝐹 finSupp (0g‘𝑆)) |
| 19 | lincval1.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 20 | 19, 2, 3, 9 | lincval1 48408 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀)) |
| 21 | 11, 18, 20 | 3jca 1128 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹 ∈ (𝑅 ↑m {𝑉}) ∧ 𝐹 finSupp (0g‘𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 finSupp cfsupp 9312 Basecbs 17179 Scalarcsca 17223 0gc0g 17402 LModclmod 20766 linC clinc 48393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-0g 17404 df-gsum 17405 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-mulg 19000 df-cntz 19249 df-ring 20144 df-lmod 20768 df-linc 48395 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |