Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcosn0 Structured version   Visualization version   GIF version

Theorem lcosn0 44870
 Description: Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincval1.b 𝐵 = (Base‘𝑀)
lincval1.s 𝑆 = (Scalar‘𝑀)
lincval1.r 𝑅 = (Base‘𝑆)
lincval1.f 𝐹 = {⟨𝑉, (0g𝑆)⟩}
Assertion
Ref Expression
lcosn0 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹 ∈ (𝑅m {𝑉}) ∧ 𝐹 finSupp (0g𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g𝑀)))

Proof of Theorem lcosn0
StepHypRef Expression
1 simpr 488 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝑉𝐵)
2 lincval1.s . . . . 5 𝑆 = (Scalar‘𝑀)
3 lincval1.r . . . . 5 𝑅 = (Base‘𝑆)
4 eqid 2798 . . . . 5 (0g𝑆) = (0g𝑆)
52, 3, 4lmod0cl 19657 . . . 4 (𝑀 ∈ LMod → (0g𝑆) ∈ 𝑅)
65adantr 484 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (0g𝑆) ∈ 𝑅)
73fvexi 6660 . . . 4 𝑅 ∈ V
87a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝑅 ∈ V)
9 lincval1.f . . . 4 𝐹 = {⟨𝑉, (0g𝑆)⟩}
109mapsnop 44789 . . 3 ((𝑉𝐵 ∧ (0g𝑆) ∈ 𝑅𝑅 ∈ V) → 𝐹 ∈ (𝑅m {𝑉}))
111, 6, 8, 10syl3anc 1368 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝐹 ∈ (𝑅m {𝑉}))
12 elmapi 8414 . . . 4 (𝐹 ∈ (𝑅m {𝑉}) → 𝐹:{𝑉}⟶𝑅)
1311, 12syl 17 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝐹:{𝑉}⟶𝑅)
14 snfi 8580 . . . 4 {𝑉} ∈ Fin
1514a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → {𝑉} ∈ Fin)
16 fvex 6659 . . . 4 (0g𝑆) ∈ V
1716a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (0g𝑆) ∈ V)
1813, 15, 17fdmfifsupp 8830 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝐹 finSupp (0g𝑆))
19 lincval1.b . . 3 𝐵 = (Base‘𝑀)
2019, 2, 3, 9lincval1 44869 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹( linC ‘𝑀){𝑉}) = (0g𝑀))
2111, 18, 203jca 1125 1 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹 ∈ (𝑅m {𝑉}) ∧ 𝐹 finSupp (0g𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g𝑀)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Vcvv 3441  {csn 4525  ⟨cop 4531   class class class wbr 5031  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ↑m cmap 8392  Fincfn 8495   finSupp cfsupp 8820  Basecbs 16478  Scalarcsca 16563  0gc0g 16708  LModclmod 19631   linC clinc 44854 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-fzo 13032  df-seq 13368  df-hash 13690  df-0g 16710  df-gsum 16711  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-mulg 18221  df-cntz 18443  df-ring 19296  df-lmod 19633  df-linc 44856 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator