| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcosn0 | Structured version Visualization version GIF version | ||
| Description: Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| lincval1.b | ⊢ 𝐵 = (Base‘𝑀) |
| lincval1.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| lincval1.r | ⊢ 𝑅 = (Base‘𝑆) |
| lincval1.f | ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} |
| Ref | Expression |
|---|---|
| lcosn0 | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹 ∈ (𝑅 ↑m {𝑉}) ∧ 𝐹 finSupp (0g‘𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝑉 ∈ 𝐵) | |
| 2 | lincval1.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 3 | lincval1.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑆) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 5 | 2, 3, 4 | lmod0cl 20850 | . . . 4 ⊢ (𝑀 ∈ LMod → (0g‘𝑆) ∈ 𝑅) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (0g‘𝑆) ∈ 𝑅) |
| 7 | 3 | fvexi 6895 | . . . 4 ⊢ 𝑅 ∈ V |
| 8 | 7 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝑅 ∈ V) |
| 9 | lincval1.f | . . . 4 ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} | |
| 10 | 9 | mapsnop 48299 | . . 3 ⊢ ((𝑉 ∈ 𝐵 ∧ (0g‘𝑆) ∈ 𝑅 ∧ 𝑅 ∈ V) → 𝐹 ∈ (𝑅 ↑m {𝑉})) |
| 11 | 1, 6, 8, 10 | syl3anc 1373 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝐹 ∈ (𝑅 ↑m {𝑉})) |
| 12 | elmapi 8868 | . . . 4 ⊢ (𝐹 ∈ (𝑅 ↑m {𝑉}) → 𝐹:{𝑉}⟶𝑅) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝐹:{𝑉}⟶𝑅) |
| 14 | snfi 9062 | . . . 4 ⊢ {𝑉} ∈ Fin | |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → {𝑉} ∈ Fin) |
| 16 | fvex 6894 | . . . 4 ⊢ (0g‘𝑆) ∈ V | |
| 17 | 16 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (0g‘𝑆) ∈ V) |
| 18 | 13, 15, 17 | fdmfifsupp 9392 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → 𝐹 finSupp (0g‘𝑆)) |
| 19 | lincval1.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 20 | 19, 2, 3, 9 | lincval1 48375 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀)) |
| 21 | 11, 18, 20 | 3jca 1128 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹 ∈ (𝑅 ↑m {𝑉}) ∧ 𝐹 finSupp (0g‘𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 class class class wbr 5124 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 Fincfn 8964 finSupp cfsupp 9378 Basecbs 17233 Scalarcsca 17279 0gc0g 17458 LModclmod 20822 linC clinc 48360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-0g 17460 df-gsum 17461 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-mulg 19056 df-cntz 19305 df-ring 20200 df-lmod 20824 df-linc 48362 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |