Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcosn0 Structured version   Visualization version   GIF version

Theorem lcosn0 45649
Description: Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincval1.b 𝐵 = (Base‘𝑀)
lincval1.s 𝑆 = (Scalar‘𝑀)
lincval1.r 𝑅 = (Base‘𝑆)
lincval1.f 𝐹 = {⟨𝑉, (0g𝑆)⟩}
Assertion
Ref Expression
lcosn0 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹 ∈ (𝑅m {𝑉}) ∧ 𝐹 finSupp (0g𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g𝑀)))

Proof of Theorem lcosn0
StepHypRef Expression
1 simpr 484 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝑉𝐵)
2 lincval1.s . . . . 5 𝑆 = (Scalar‘𝑀)
3 lincval1.r . . . . 5 𝑅 = (Base‘𝑆)
4 eqid 2738 . . . . 5 (0g𝑆) = (0g𝑆)
52, 3, 4lmod0cl 20064 . . . 4 (𝑀 ∈ LMod → (0g𝑆) ∈ 𝑅)
65adantr 480 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (0g𝑆) ∈ 𝑅)
73fvexi 6770 . . . 4 𝑅 ∈ V
87a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝑅 ∈ V)
9 lincval1.f . . . 4 𝐹 = {⟨𝑉, (0g𝑆)⟩}
109mapsnop 45568 . . 3 ((𝑉𝐵 ∧ (0g𝑆) ∈ 𝑅𝑅 ∈ V) → 𝐹 ∈ (𝑅m {𝑉}))
111, 6, 8, 10syl3anc 1369 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝐹 ∈ (𝑅m {𝑉}))
12 elmapi 8595 . . . 4 (𝐹 ∈ (𝑅m {𝑉}) → 𝐹:{𝑉}⟶𝑅)
1311, 12syl 17 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝐹:{𝑉}⟶𝑅)
14 snfi 8788 . . . 4 {𝑉} ∈ Fin
1514a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → {𝑉} ∈ Fin)
16 fvex 6769 . . . 4 (0g𝑆) ∈ V
1716a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (0g𝑆) ∈ V)
1813, 15, 17fdmfifsupp 9068 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝐹 finSupp (0g𝑆))
19 lincval1.b . . 3 𝐵 = (Base‘𝑀)
2019, 2, 3, 9lincval1 45648 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹( linC ‘𝑀){𝑉}) = (0g𝑀))
2111, 18, 203jca 1126 1 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹 ∈ (𝑅m {𝑉}) ∧ 𝐹 finSupp (0g𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  cop 4564   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  Basecbs 16840  Scalarcsca 16891  0gc0g 17067  LModclmod 20038   linC clinc 45633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mulg 18616  df-cntz 18838  df-ring 19700  df-lmod 20040  df-linc 45635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator