| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfi1fseqlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for mbfi1fseq 25661. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| mbfi1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| mbfi1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| mbfi1fseq.3 | ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
| mbfi1fseq.4 | ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) |
| Ref | Expression |
|---|---|
| mbfi1fseqlem2 | ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11467 | . . . . . 6 ⊢ (𝑚 = 𝐴 → -𝑚 = -𝐴) | |
| 2 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝐴 → 𝑚 = 𝐴) | |
| 3 | 1, 2 | oveq12d 7418 | . . . . 5 ⊢ (𝑚 = 𝐴 → (-𝑚[,]𝑚) = (-𝐴[,]𝐴)) |
| 4 | 3 | eleq2d 2819 | . . . 4 ⊢ (𝑚 = 𝐴 → (𝑥 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝐴[,]𝐴))) |
| 5 | oveq1 7407 | . . . . . 6 ⊢ (𝑚 = 𝐴 → (𝑚𝐽𝑥) = (𝐴𝐽𝑥)) | |
| 6 | 5, 2 | breq12d 5130 | . . . . 5 ⊢ (𝑚 = 𝐴 → ((𝑚𝐽𝑥) ≤ 𝑚 ↔ (𝐴𝐽𝑥) ≤ 𝐴)) |
| 7 | 6, 5, 2 | ifbieq12d 4527 | . . . 4 ⊢ (𝑚 = 𝐴 → if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴)) |
| 8 | 4, 7 | ifbieq1d 4523 | . . 3 ⊢ (𝑚 = 𝐴 → if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) |
| 9 | 8 | mpteq2dv 5213 | . 2 ⊢ (𝑚 = 𝐴 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
| 10 | mbfi1fseq.4 | . 2 ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) | |
| 11 | reex 11213 | . . 3 ⊢ ℝ ∈ V | |
| 12 | 11 | mptex 7212 | . 2 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) ∈ V |
| 13 | 9, 10, 12 | fvmpt 6983 | 1 ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ifcif 4498 class class class wbr 5117 ↦ cmpt 5199 ⟶wf 6524 ‘cfv 6528 (class class class)co 7400 ∈ cmpo 7402 ℝcr 11121 0cc0 11122 · cmul 11127 +∞cpnf 11259 ≤ cle 11263 -cneg 11460 / cdiv 11887 ℕcn 12233 2c2 12288 [,)cico 13356 [,]cicc 13357 ⌊cfl 13797 ↑cexp 14069 MblFncmbf 25554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pr 5400 ax-cnex 11178 ax-resscn 11179 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-neg 11462 |
| This theorem is referenced by: mbfi1fseqlem3 25657 mbfi1fseqlem4 25658 mbfi1fseqlem5 25659 mbfi1fseqlem6 25660 |
| Copyright terms: Public domain | W3C validator |