| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfi1fseqlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for mbfi1fseq 25638. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| mbfi1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| mbfi1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| mbfi1fseq.3 | ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
| mbfi1fseq.4 | ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) |
| Ref | Expression |
|---|---|
| mbfi1fseqlem2 | ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11373 | . . . . . 6 ⊢ (𝑚 = 𝐴 → -𝑚 = -𝐴) | |
| 2 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝐴 → 𝑚 = 𝐴) | |
| 3 | 1, 2 | oveq12d 7371 | . . . . 5 ⊢ (𝑚 = 𝐴 → (-𝑚[,]𝑚) = (-𝐴[,]𝐴)) |
| 4 | 3 | eleq2d 2814 | . . . 4 ⊢ (𝑚 = 𝐴 → (𝑥 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝐴[,]𝐴))) |
| 5 | oveq1 7360 | . . . . . 6 ⊢ (𝑚 = 𝐴 → (𝑚𝐽𝑥) = (𝐴𝐽𝑥)) | |
| 6 | 5, 2 | breq12d 5108 | . . . . 5 ⊢ (𝑚 = 𝐴 → ((𝑚𝐽𝑥) ≤ 𝑚 ↔ (𝐴𝐽𝑥) ≤ 𝐴)) |
| 7 | 6, 5, 2 | ifbieq12d 4507 | . . . 4 ⊢ (𝑚 = 𝐴 → if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴)) |
| 8 | 4, 7 | ifbieq1d 4503 | . . 3 ⊢ (𝑚 = 𝐴 → if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) |
| 9 | 8 | mpteq2dv 5189 | . 2 ⊢ (𝑚 = 𝐴 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
| 10 | mbfi1fseq.4 | . 2 ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) | |
| 11 | reex 11119 | . . 3 ⊢ ℝ ∈ V | |
| 12 | 11 | mptex 7163 | . 2 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) ∈ V |
| 13 | 9, 10, 12 | fvmpt 6934 | 1 ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ℝcr 11027 0cc0 11028 · cmul 11033 +∞cpnf 11165 ≤ cle 11169 -cneg 11366 / cdiv 11795 ℕcn 12146 2c2 12201 [,)cico 13268 [,]cicc 13269 ⌊cfl 13712 ↑cexp 13986 MblFncmbf 25531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-neg 11368 |
| This theorem is referenced by: mbfi1fseqlem3 25634 mbfi1fseqlem4 25635 mbfi1fseqlem5 25636 mbfi1fseqlem6 25637 |
| Copyright terms: Public domain | W3C validator |