![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfi1fseqlem2 | Structured version Visualization version GIF version |
Description: Lemma for mbfi1fseq 25575. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
mbfi1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
mbfi1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
mbfi1fseq.3 | ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
mbfi1fseq.4 | ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) |
Ref | Expression |
---|---|
mbfi1fseqlem2 | ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq 11450 | . . . . . 6 ⊢ (𝑚 = 𝐴 → -𝑚 = -𝐴) | |
2 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝐴 → 𝑚 = 𝐴) | |
3 | 1, 2 | oveq12d 7420 | . . . . 5 ⊢ (𝑚 = 𝐴 → (-𝑚[,]𝑚) = (-𝐴[,]𝐴)) |
4 | 3 | eleq2d 2811 | . . . 4 ⊢ (𝑚 = 𝐴 → (𝑥 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝐴[,]𝐴))) |
5 | oveq1 7409 | . . . . . 6 ⊢ (𝑚 = 𝐴 → (𝑚𝐽𝑥) = (𝐴𝐽𝑥)) | |
6 | 5, 2 | breq12d 5152 | . . . . 5 ⊢ (𝑚 = 𝐴 → ((𝑚𝐽𝑥) ≤ 𝑚 ↔ (𝐴𝐽𝑥) ≤ 𝐴)) |
7 | 6, 5, 2 | ifbieq12d 4549 | . . . 4 ⊢ (𝑚 = 𝐴 → if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴)) |
8 | 4, 7 | ifbieq1d 4545 | . . 3 ⊢ (𝑚 = 𝐴 → if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) |
9 | 8 | mpteq2dv 5241 | . 2 ⊢ (𝑚 = 𝐴 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
10 | mbfi1fseq.4 | . 2 ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) | |
11 | reex 11198 | . . 3 ⊢ ℝ ∈ V | |
12 | 11 | mptex 7217 | . 2 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) ∈ V |
13 | 9, 10, 12 | fvmpt 6989 | 1 ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ifcif 4521 class class class wbr 5139 ↦ cmpt 5222 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 ∈ cmpo 7404 ℝcr 11106 0cc0 11107 · cmul 11112 +∞cpnf 11243 ≤ cle 11247 -cneg 11443 / cdiv 11869 ℕcn 12210 2c2 12265 [,)cico 13324 [,]cicc 13325 ⌊cfl 13753 ↑cexp 14025 MblFncmbf 25467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-cnex 11163 ax-resscn 11164 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-neg 11445 |
This theorem is referenced by: mbfi1fseqlem3 25571 mbfi1fseqlem4 25572 mbfi1fseqlem5 25573 mbfi1fseqlem6 25574 |
Copyright terms: Public domain | W3C validator |