Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfi1fseqlem2 | Structured version Visualization version GIF version |
Description: Lemma for mbfi1fseq 24886. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
mbfi1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
mbfi1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
mbfi1fseq.3 | ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
mbfi1fseq.4 | ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) |
Ref | Expression |
---|---|
mbfi1fseqlem2 | ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq 11213 | . . . . . 6 ⊢ (𝑚 = 𝐴 → -𝑚 = -𝐴) | |
2 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝐴 → 𝑚 = 𝐴) | |
3 | 1, 2 | oveq12d 7293 | . . . . 5 ⊢ (𝑚 = 𝐴 → (-𝑚[,]𝑚) = (-𝐴[,]𝐴)) |
4 | 3 | eleq2d 2824 | . . . 4 ⊢ (𝑚 = 𝐴 → (𝑥 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝐴[,]𝐴))) |
5 | oveq1 7282 | . . . . . 6 ⊢ (𝑚 = 𝐴 → (𝑚𝐽𝑥) = (𝐴𝐽𝑥)) | |
6 | 5, 2 | breq12d 5087 | . . . . 5 ⊢ (𝑚 = 𝐴 → ((𝑚𝐽𝑥) ≤ 𝑚 ↔ (𝐴𝐽𝑥) ≤ 𝐴)) |
7 | 6, 5, 2 | ifbieq12d 4487 | . . . 4 ⊢ (𝑚 = 𝐴 → if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴)) |
8 | 4, 7 | ifbieq1d 4483 | . . 3 ⊢ (𝑚 = 𝐴 → if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) |
9 | 8 | mpteq2dv 5176 | . 2 ⊢ (𝑚 = 𝐴 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
10 | mbfi1fseq.4 | . 2 ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) | |
11 | reex 10962 | . . 3 ⊢ ℝ ∈ V | |
12 | 11 | mptex 7099 | . 2 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) ∈ V |
13 | 9, 10, 12 | fvmpt 6875 | 1 ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ℝcr 10870 0cc0 10871 · cmul 10876 +∞cpnf 11006 ≤ cle 11010 -cneg 11206 / cdiv 11632 ℕcn 11973 2c2 12028 [,)cico 13081 [,]cicc 13082 ⌊cfl 13510 ↑cexp 13782 MblFncmbf 24778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-neg 11208 |
This theorem is referenced by: mbfi1fseqlem3 24882 mbfi1fseqlem4 24883 mbfi1fseqlem5 24884 mbfi1fseqlem6 24885 |
Copyright terms: Public domain | W3C validator |