MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem2 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem2 23693
Description: Lemma for mbfi1fseq 23698. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem2 (𝐴 ∈ ℕ → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑥,𝐺   𝑚,𝐽   𝜑,𝑚,𝑥,𝑦   𝐴,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦)

Proof of Theorem mbfi1fseqlem2
StepHypRef Expression
1 negeq 10555 . . . . . 6 (𝑚 = 𝐴 → -𝑚 = -𝐴)
2 id 22 . . . . . 6 (𝑚 = 𝐴𝑚 = 𝐴)
31, 2oveq12d 6889 . . . . 5 (𝑚 = 𝐴 → (-𝑚[,]𝑚) = (-𝐴[,]𝐴))
43eleq2d 2870 . . . 4 (𝑚 = 𝐴 → (𝑥 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝐴[,]𝐴)))
5 oveq1 6878 . . . . . 6 (𝑚 = 𝐴 → (𝑚𝐽𝑥) = (𝐴𝐽𝑥))
65, 2breq12d 4853 . . . . 5 (𝑚 = 𝐴 → ((𝑚𝐽𝑥) ≤ 𝑚 ↔ (𝐴𝐽𝑥) ≤ 𝐴))
76, 5, 2ifbieq12d 4303 . . . 4 (𝑚 = 𝐴 → if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴))
84, 7ifbieq1d 4299 . . 3 (𝑚 = 𝐴 → if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
98mpteq2dv 4935 . 2 (𝑚 = 𝐴 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
10 mbfi1fseq.4 . 2 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
11 reex 10309 . . 3 ℝ ∈ V
1211mptex 6708 . 2 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) ∈ V
139, 10, 12fvmpt 6500 1 (𝐴 ∈ ℕ → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1637  wcel 2158  ifcif 4276   class class class wbr 4840  cmpt 4919  wf 6094  cfv 6098  (class class class)co 6871  cmpt2 6873  cr 10217  0cc0 10218   · cmul 10223  +∞cpnf 10353  cle 10357  -cneg 10549   / cdiv 10966  cn 11302  2c2 11352  [,)cico 12391  [,]cicc 12392  cfl 12811  cexp 13079  MblFncmbf 23591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pr 5093  ax-cnex 10274  ax-resscn 10275
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-ral 3100  df-rex 3101  df-reu 3102  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-nul 4114  df-if 4277  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4627  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-id 5216  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-ov 6874  df-neg 10551
This theorem is referenced by:  mbfi1fseqlem3  23694  mbfi1fseqlem4  23695  mbfi1fseqlem5  23696  mbfi1fseqlem6  23697
  Copyright terms: Public domain W3C validator