| Step | Hyp | Ref
| Expression |
| 1 | | mbfi1fseq.1 |
. 2
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 2 | | mbfi1fseq.2 |
. 2
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| 3 | | oveq2 7439 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (2↑𝑗) = (2↑𝑘)) |
| 4 | 3 | oveq2d 7447 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((𝐹‘𝑧) · (2↑𝑗)) = ((𝐹‘𝑧) · (2↑𝑘))) |
| 5 | 4 | fveq2d 6910 |
. . . 4
⊢ (𝑗 = 𝑘 → (⌊‘((𝐹‘𝑧) · (2↑𝑗))) = (⌊‘((𝐹‘𝑧) · (2↑𝑘)))) |
| 6 | 5, 3 | oveq12d 7449 |
. . 3
⊢ (𝑗 = 𝑘 → ((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)) = ((⌊‘((𝐹‘𝑧) · (2↑𝑘))) / (2↑𝑘))) |
| 7 | | fveq2 6906 |
. . . . 5
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) |
| 8 | 7 | fvoveq1d 7453 |
. . . 4
⊢ (𝑧 = 𝑦 → (⌊‘((𝐹‘𝑧) · (2↑𝑘))) = (⌊‘((𝐹‘𝑦) · (2↑𝑘)))) |
| 9 | 8 | oveq1d 7446 |
. . 3
⊢ (𝑧 = 𝑦 → ((⌊‘((𝐹‘𝑧) · (2↑𝑘))) / (2↑𝑘)) = ((⌊‘((𝐹‘𝑦) · (2↑𝑘))) / (2↑𝑘))) |
| 10 | 6, 9 | cbvmpov 7528 |
. 2
⊢ (𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗))) = (𝑘 ∈ ℕ, 𝑦 ∈ ℝ ↦
((⌊‘((𝐹‘𝑦) · (2↑𝑘))) / (2↑𝑘))) |
| 11 | | eleq1w 2824 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝑚[,]𝑚))) |
| 12 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) = (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥)) |
| 13 | 12 | breq1d 5153 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚 ↔ (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚)) |
| 14 | 13, 12 | ifbieq1d 4550 |
. . . . . 6
⊢ (𝑦 = 𝑥 → if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚) = if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚)) |
| 15 | 11, 14 | ifbieq1d 4550 |
. . . . 5
⊢ (𝑦 = 𝑥 → if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0) = if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0)) |
| 16 | 15 | cbvmptv 5255 |
. . . 4
⊢ (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0)) |
| 17 | | negeq 11500 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → -𝑚 = -𝑘) |
| 18 | | id 22 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → 𝑚 = 𝑘) |
| 19 | 17, 18 | oveq12d 7449 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → (-𝑚[,]𝑚) = (-𝑘[,]𝑘)) |
| 20 | 19 | eleq2d 2827 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (𝑥 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝑘[,]𝑘))) |
| 21 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) = (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥)) |
| 22 | 21, 18 | breq12d 5156 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → ((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚 ↔ (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘)) |
| 23 | 22, 21, 18 | ifbieq12d 4554 |
. . . . . 6
⊢ (𝑚 = 𝑘 → if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚) = if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘)) |
| 24 | 20, 23 | ifbieq1d 4550 |
. . . . 5
⊢ (𝑚 = 𝑘 → if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0) = if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0)) |
| 25 | 24 | mpteq2dv 5244 |
. . . 4
⊢ (𝑚 = 𝑘 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0))) |
| 26 | 16, 25 | eqtrid 2789 |
. . 3
⊢ (𝑚 = 𝑘 → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0))) |
| 27 | 26 | cbvmptv 5255 |
. 2
⊢ (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0))) = (𝑘 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0))) |
| 28 | 1, 2, 10, 27 | mbfi1fseqlem6 25755 |
1
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |