Step | Hyp | Ref
| Expression |
1 | | mbfi1fseq.1 |
. 2
⊢ (𝜑 → 𝐹 ∈ MblFn) |
2 | | mbfi1fseq.2 |
. 2
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
3 | | oveq2 7263 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (2↑𝑗) = (2↑𝑘)) |
4 | 3 | oveq2d 7271 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((𝐹‘𝑧) · (2↑𝑗)) = ((𝐹‘𝑧) · (2↑𝑘))) |
5 | 4 | fveq2d 6760 |
. . . 4
⊢ (𝑗 = 𝑘 → (⌊‘((𝐹‘𝑧) · (2↑𝑗))) = (⌊‘((𝐹‘𝑧) · (2↑𝑘)))) |
6 | 5, 3 | oveq12d 7273 |
. . 3
⊢ (𝑗 = 𝑘 → ((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)) = ((⌊‘((𝐹‘𝑧) · (2↑𝑘))) / (2↑𝑘))) |
7 | | fveq2 6756 |
. . . . 5
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) |
8 | 7 | fvoveq1d 7277 |
. . . 4
⊢ (𝑧 = 𝑦 → (⌊‘((𝐹‘𝑧) · (2↑𝑘))) = (⌊‘((𝐹‘𝑦) · (2↑𝑘)))) |
9 | 8 | oveq1d 7270 |
. . 3
⊢ (𝑧 = 𝑦 → ((⌊‘((𝐹‘𝑧) · (2↑𝑘))) / (2↑𝑘)) = ((⌊‘((𝐹‘𝑦) · (2↑𝑘))) / (2↑𝑘))) |
10 | 6, 9 | cbvmpov 7348 |
. 2
⊢ (𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗))) = (𝑘 ∈ ℕ, 𝑦 ∈ ℝ ↦
((⌊‘((𝐹‘𝑦) · (2↑𝑘))) / (2↑𝑘))) |
11 | | eleq1w 2821 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝑚[,]𝑚))) |
12 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) = (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥)) |
13 | 12 | breq1d 5080 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚 ↔ (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚)) |
14 | 13, 12 | ifbieq1d 4480 |
. . . . . 6
⊢ (𝑦 = 𝑥 → if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚) = if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚)) |
15 | 11, 14 | ifbieq1d 4480 |
. . . . 5
⊢ (𝑦 = 𝑥 → if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0) = if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0)) |
16 | 15 | cbvmptv 5183 |
. . . 4
⊢ (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0)) |
17 | | negeq 11143 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → -𝑚 = -𝑘) |
18 | | id 22 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → 𝑚 = 𝑘) |
19 | 17, 18 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → (-𝑚[,]𝑚) = (-𝑘[,]𝑘)) |
20 | 19 | eleq2d 2824 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (𝑥 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝑘[,]𝑘))) |
21 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) = (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥)) |
22 | 21, 18 | breq12d 5083 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → ((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚 ↔ (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘)) |
23 | 22, 21, 18 | ifbieq12d 4484 |
. . . . . 6
⊢ (𝑚 = 𝑘 → if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚) = if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘)) |
24 | 20, 23 | ifbieq1d 4480 |
. . . . 5
⊢ (𝑚 = 𝑘 → if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0) = if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0)) |
25 | 24 | mpteq2dv 5172 |
. . . 4
⊢ (𝑚 = 𝑘 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0))) |
26 | 16, 25 | syl5eq 2791 |
. . 3
⊢ (𝑚 = 𝑘 → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0))) |
27 | 26 | cbvmptv 5183 |
. 2
⊢ (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0))) = (𝑘 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦
((⌊‘((𝐹‘𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0))) |
28 | 1, 2, 10, 27 | mbfi1fseqlem6 24790 |
1
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |