MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseq Structured version   Visualization version   GIF version

Theorem mbfi1fseq 25776
Description: A characterization of measurability in terms of simple functions (this is an if and only if for nonnegative functions, although we don't prove it). Any nonnegative measurable function is the limit of an increasing sequence of nonnegative simple functions. This proof is an example of a poor de Bruijn factor - the formalized proof is much longer than an average hand proof, which usually just describes the function 𝐺 and "leaves the details as an exercise to the reader". (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
Assertion
Ref Expression
mbfi1fseq (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑛,𝑥,𝐹   𝜑,𝑛,𝑥
Allowed substitution hint:   𝜑(𝑔)

Proof of Theorem mbfi1fseq
Dummy variables 𝑗 𝑘 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . 2 (𝜑𝐹 ∈ MblFn)
2 mbfi1fseq.2 . 2 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 oveq2 7456 . . . . . 6 (𝑗 = 𝑘 → (2↑𝑗) = (2↑𝑘))
43oveq2d 7464 . . . . 5 (𝑗 = 𝑘 → ((𝐹𝑧) · (2↑𝑗)) = ((𝐹𝑧) · (2↑𝑘)))
54fveq2d 6924 . . . 4 (𝑗 = 𝑘 → (⌊‘((𝐹𝑧) · (2↑𝑗))) = (⌊‘((𝐹𝑧) · (2↑𝑘))))
65, 3oveq12d 7466 . . 3 (𝑗 = 𝑘 → ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)) = ((⌊‘((𝐹𝑧) · (2↑𝑘))) / (2↑𝑘)))
7 fveq2 6920 . . . . 5 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
87fvoveq1d 7470 . . . 4 (𝑧 = 𝑦 → (⌊‘((𝐹𝑧) · (2↑𝑘))) = (⌊‘((𝐹𝑦) · (2↑𝑘))))
98oveq1d 7463 . . 3 (𝑧 = 𝑦 → ((⌊‘((𝐹𝑧) · (2↑𝑘))) / (2↑𝑘)) = ((⌊‘((𝐹𝑦) · (2↑𝑘))) / (2↑𝑘)))
106, 9cbvmpov 7545 . 2 (𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗))) = (𝑘 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑘))) / (2↑𝑘)))
11 eleq1w 2827 . . . . . 6 (𝑦 = 𝑥 → (𝑦 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝑚[,]𝑚)))
12 oveq2 7456 . . . . . . . 8 (𝑦 = 𝑥 → (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) = (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥))
1312breq1d 5176 . . . . . . 7 (𝑦 = 𝑥 → ((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚 ↔ (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚))
1413, 12ifbieq1d 4572 . . . . . 6 (𝑦 = 𝑥 → if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚) = if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚))
1511, 14ifbieq1d 4572 . . . . 5 (𝑦 = 𝑥 → if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0) = if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0))
1615cbvmptv 5279 . . . 4 (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0))
17 negeq 11528 . . . . . . . 8 (𝑚 = 𝑘 → -𝑚 = -𝑘)
18 id 22 . . . . . . . 8 (𝑚 = 𝑘𝑚 = 𝑘)
1917, 18oveq12d 7466 . . . . . . 7 (𝑚 = 𝑘 → (-𝑚[,]𝑚) = (-𝑘[,]𝑘))
2019eleq2d 2830 . . . . . 6 (𝑚 = 𝑘 → (𝑥 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝑘[,]𝑘)))
21 oveq1 7455 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) = (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥))
2221, 18breq12d 5179 . . . . . . 7 (𝑚 = 𝑘 → ((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚 ↔ (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘))
2322, 21, 18ifbieq12d 4576 . . . . . 6 (𝑚 = 𝑘 → if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚) = if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘))
2420, 23ifbieq1d 4572 . . . . 5 (𝑚 = 𝑘 → if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0) = if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0))
2524mpteq2dv 5268 . . . 4 (𝑚 = 𝑘 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0)))
2616, 25eqtrid 2792 . . 3 (𝑚 = 𝑘 → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0)))
2726cbvmptv 5279 . 2 (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0))) = (𝑘 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0)))
281, 2, 10, 27mbfi1fseqlem6 25775 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wex 1777  wcel 2108  wral 3067  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  r cofr 7713  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  cle 11325  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  [,)cico 13409  [,]cicc 13410  cfl 13841  cexp 14112  cli 15530  MblFncmbf 25668  1citg1 25669  0𝑝c0p 25723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-0p 25724
This theorem is referenced by:  mbfi1flimlem  25777  itg2add  25814
  Copyright terms: Public domain W3C validator