MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem6 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem6 25678
Description: Lemma for mbfi1fseq 25679. Verify that 𝐺 converges pointwise to 𝐹, and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem6 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑚,𝑛,𝑥,𝑦,𝐹   𝑔,𝐺,𝑛,𝑥   𝑚,𝐽   𝜑,𝑚,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑔)   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦,𝑔,𝑛)

Proof of Theorem mbfi1fseqlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . . 3 (𝜑𝐹 ∈ MblFn)
2 mbfi1fseq.2 . . 3 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 mbfi1fseq.3 . . 3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
4 mbfi1fseq.4 . . 3 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
51, 2, 3, 4mbfi1fseqlem4 25676 . 2 (𝜑𝐺:ℕ⟶dom ∫1)
61, 2, 3, 4mbfi1fseqlem5 25677 . . 3 ((𝜑𝑛 ∈ ℕ) → (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
76ralrimiva 3133 . 2 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
8 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
98recnd 11268 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
109abscld 15460 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℝ)
112ffvelcdmda 7079 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
12 elrege0 13476 . . . . . . . 8 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1311, 12sylib 218 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1413simpld 494 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1510, 14readdcld 11269 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ)
16 arch 12503 . . . . 5 (((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ → ∃𝑘 ∈ ℕ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
1715, 16syl 17 . . . 4 ((𝜑𝑥 ∈ ℝ) → ∃𝑘 ∈ ℕ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
18 eqid 2736 . . . . 5 (ℤ𝑘) = (ℤ𝑘)
19 nnz 12614 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
2019ad2antrl 728 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → 𝑘 ∈ ℤ)
21 nnuz 12900 . . . . . . . 8 ℕ = (ℤ‘1)
22 1zzd 12628 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℤ)
23 halfcn 12460 . . . . . . . . . 10 (1 / 2) ∈ ℂ
2423a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (1 / 2) ∈ ℂ)
25 halfre 12459 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
26 halfge0 12462 . . . . . . . . . . . 12 0 ≤ (1 / 2)
27 absid 15320 . . . . . . . . . . . 12 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2825, 26, 27mp2an 692 . . . . . . . . . . 11 (abs‘(1 / 2)) = (1 / 2)
29 halflt1 12463 . . . . . . . . . . 11 (1 / 2) < 1
3028, 29eqbrtri 5145 . . . . . . . . . 10 (abs‘(1 / 2)) < 1
3130a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (abs‘(1 / 2)) < 1)
3224, 31expcnv 15885 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) ⇝ 0)
3314recnd 11268 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
34 nnex 12251 . . . . . . . . . 10 ℕ ∈ V
3534mptex 7220 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ∈ V
3635a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ∈ V)
37 nnnn0 12513 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
3837adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
39 oveq2 7418 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑗))
40 eqid 2736 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
41 ovex 7443 . . . . . . . . . . 11 ((1 / 2)↑𝑗) ∈ V
4239, 40, 41fvmpt 6991 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗))
4338, 42syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗))
44 expcl 14102 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ)
4523, 38, 44sylancr 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) ∈ ℂ)
4643, 45eqeltrd 2835 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) ∈ ℂ)
4739oveq2d 7426 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝐹𝑥) − ((1 / 2)↑𝑛)) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
48 eqid 2736 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))
49 ovex 7443 . . . . . . . . . . 11 ((𝐹𝑥) − ((1 / 2)↑𝑗)) ∈ V
5047, 48, 49fvmpt 6991 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5150adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5243oveq2d 7426 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗)) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5351, 52eqtr4d 2774 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗)))
5421, 22, 32, 33, 36, 46, 53climsubc2 15660 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ ((𝐹𝑥) − 0))
5533subid1d 11588 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) − 0) = (𝐹𝑥))
5654, 55breqtrd 5150 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹𝑥))
5756adantr 480 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹𝑥))
5834mptex 7220 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ∈ V
5958a1i 11 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ∈ V)
60 simprl 770 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → 𝑘 ∈ ℕ)
61 eluznn 12939 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ)
6260, 61sylan 580 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ)
6362, 50syl 17 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
6414ad2antrr 726 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ ℝ)
6562, 37syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ0)
66 reexpcl 14101 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℝ)
6725, 65, 66sylancr 587 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((1 / 2)↑𝑗) ∈ ℝ)
6864, 67resubcld 11670 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) ∈ ℝ)
6963, 68eqeltrd 2835 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ∈ ℝ)
70 fveq2 6881 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐺𝑛) = (𝐺𝑗))
7170fveq1d 6883 . . . . . . . 8 (𝑛 = 𝑗 → ((𝐺𝑛)‘𝑥) = ((𝐺𝑗)‘𝑥))
72 eqid 2736 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))
73 fvex 6894 . . . . . . . 8 ((𝐺𝑗)‘𝑥) ∈ V
7471, 72, 73fvmpt 6991 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((𝐺𝑗)‘𝑥))
7562, 74syl 17 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((𝐺𝑗)‘𝑥))
765ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝐺:ℕ⟶dom ∫1)
7776, 62ffvelcdmd 7080 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗) ∈ dom ∫1)
78 i1ff 25634 . . . . . . . 8 ((𝐺𝑗) ∈ dom ∫1 → (𝐺𝑗):ℝ⟶ℝ)
7977, 78syl 17 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗):ℝ⟶ℝ)
808ad2antrr 726 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℝ)
8179, 80ffvelcdmd 7080 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐺𝑗)‘𝑥) ∈ ℝ)
8275, 81eqeltrd 2835 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) ∈ ℝ)
8333ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ ℂ)
84 2nn 12318 . . . . . . . . . . . . . 14 2 ∈ ℕ
85 nnexpcl 14097 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
8684, 65, 85sylancr 587 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℕ)
8786nnred 12260 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℝ)
8887recnd 11268 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℂ)
8986nnne0d 12295 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ≠ 0)
9083, 88, 89divcan4d 12028 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) = (𝐹𝑥))
9190eqcomd 2742 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) = (((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)))
92 2cnd 12323 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 2 ∈ ℂ)
93 2ne0 12349 . . . . . . . . . . 11 2 ≠ 0
9493a1i 11 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 2 ≠ 0)
95 eluzelz 12867 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑘) → 𝑗 ∈ ℤ)
9695adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℤ)
9792, 94, 96exprecd 14177 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
9891, 97oveq12d 7428 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗))))
9964, 87remulcld 11270 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ∈ ℝ)
10099recnd 11268 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ∈ ℂ)
101 1cnd 11235 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 1 ∈ ℂ)
102100, 101, 88, 89divsubdird 12061 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗))))
10398, 102eqtr4d 2774 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)))
104 fllep1 13823 . . . . . . . . . 10 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1))
10599, 104syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1))
106 1red 11241 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 1 ∈ ℝ)
107 reflcl 13818 . . . . . . . . . . 11 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ)
10899, 107syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ)
10999, 106, 108lesubaddd 11839 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1)))
110105, 109mpbird 257 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))))
111 peano2rem 11555 . . . . . . . . . 10 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ)
11299, 111syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ)
11386nngt0d 12294 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 < (2↑𝑗))
114 lediv1 12112 . . . . . . . . 9 (((((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ ∧ (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 < (2↑𝑗))) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗))))
115112, 108, 87, 113, 114syl112anc 1376 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗))))
116110, 115mpbid 232 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
117103, 116eqbrtrd 5146 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
1181, 2, 3, 4mbfi1fseqlem2 25674 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐺𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)))
11962, 118syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)))
120119fveq1d 6883 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐺𝑗)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥))
121 ovex 7443 . . . . . . . . . . 11 (𝑗𝐽𝑥) ∈ V
122 vex 3468 . . . . . . . . . . 11 𝑗 ∈ V
123121, 122ifex 4556 . . . . . . . . . 10 if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) ∈ V
124 c0ex 11234 . . . . . . . . . 10 0 ∈ V
125123, 124ifex 4556 . . . . . . . . 9 if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V
126 eqid 2736 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
127126fvmpt2 7002 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
12880, 125, 127sylancl 586 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
12975, 120, 1283eqtrd 2775 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
13010ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ∈ ℝ)
13115ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ)
13262nnred 12260 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℝ)
13311ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ (0[,)+∞))
134133, 12sylib 218 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
135134simprd 495 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 ≤ (𝐹𝑥))
136130, 64addge01d 11830 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (0 ≤ (𝐹𝑥) ↔ (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥))))
137135, 136mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥)))
13860adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘 ∈ ℕ)
139138nnred 12260 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
140 simplrr 777 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
141131, 139, 140ltled 11388 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ≤ 𝑘)
142 eluzle 12870 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑘) → 𝑘𝑗)
143142adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘𝑗)
144131, 139, 132, 141, 143letrd 11397 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ≤ 𝑗)
145130, 131, 132, 137, 144letrd 11397 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ≤ 𝑗)
14680, 132absled 15454 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) ≤ 𝑗 ↔ (-𝑗𝑥𝑥𝑗)))
147145, 146mpbid 232 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (-𝑗𝑥𝑥𝑗))
148147simpld 494 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → -𝑗𝑥)
149147simprd 495 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥𝑗)
150132renegcld 11669 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → -𝑗 ∈ ℝ)
151 elicc2 13433 . . . . . . . . . 10 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗𝑥𝑥𝑗)))
152150, 132, 151syl2anc 584 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗𝑥𝑥𝑗)))
15380, 148, 149, 152mpbir3and 1343 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ (-𝑗[,]𝑗))
154153iftrued 4513 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) = if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗))
155 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑗𝑦 = 𝑥) → 𝑦 = 𝑥)
156155fveq2d 6885 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑗𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
157 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑗𝑦 = 𝑥) → 𝑚 = 𝑗)
158157oveq2d 7426 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑗𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑗))
159156, 158oveq12d 7428 . . . . . . . . . . . . . 14 ((𝑚 = 𝑗𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝑗)))
160159fveq2d 6885 . . . . . . . . . . . . 13 ((𝑚 = 𝑗𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝑗))))
161160, 158oveq12d 7428 . . . . . . . . . . . 12 ((𝑚 = 𝑗𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
162 ovex 7443 . . . . . . . . . . . 12 ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ V
163161, 3, 162ovmpoa 7567 . . . . . . . . . . 11 ((𝑗 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑗𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
16462, 80, 163syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑗𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
165108, 86nndivred 12299 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ ℝ)
166 flle 13821 . . . . . . . . . . . . 13 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗)))
16799, 166syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗)))
168 ledivmul2 12126 . . . . . . . . . . . . 13 (((⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 < (2↑𝑗))) → (((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥) ↔ (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗))))
169108, 64, 87, 113, 168syl112anc 1376 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥) ↔ (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗))))
170167, 169mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥))
1719ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℂ)
172171absge0d 15468 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 ≤ (abs‘𝑥))
17364, 130addge02d 11831 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (0 ≤ (abs‘𝑥) ↔ (𝐹𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥))))
174172, 173mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥)))
17564, 131, 132, 174, 144letrd 11397 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ≤ 𝑗)
176165, 64, 132, 170, 175letrd 11397 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ 𝑗)
177164, 176eqbrtrd 5146 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑗𝐽𝑥) ≤ 𝑗)
178177iftrued 4513 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = (𝑗𝐽𝑥))
179178, 164eqtrd 2771 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
180129, 154, 1793eqtrd 2775 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
181117, 63, 1803brtr4d 5156 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗))
182180, 170eqbrtrd 5146 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) ≤ (𝐹𝑥))
18318, 20, 57, 59, 69, 82, 181, 182climsqz 15662 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18417, 183rexlimddv 3148 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
185184ralrimiva 3133 . 2 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18634mptex 7220 . . . 4 (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ∈ V
1874, 186eqeltri 2831 . . 3 𝐺 ∈ V
188 feq1 6691 . . . 4 (𝑔 = 𝐺 → (𝑔:ℕ⟶dom ∫1𝐺:ℕ⟶dom ∫1))
189 fveq1 6880 . . . . . . 7 (𝑔 = 𝐺 → (𝑔𝑛) = (𝐺𝑛))
190189breq2d 5136 . . . . . 6 (𝑔 = 𝐺 → (0𝑝r ≤ (𝑔𝑛) ↔ 0𝑝r ≤ (𝐺𝑛)))
191 fveq1 6880 . . . . . . 7 (𝑔 = 𝐺 → (𝑔‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1)))
192189, 191breq12d 5137 . . . . . 6 (𝑔 = 𝐺 → ((𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1)) ↔ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
193190, 192anbi12d 632 . . . . 5 (𝑔 = 𝐺 → ((0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))))
194193ralbidv 3164 . . . 4 (𝑔 = 𝐺 → (∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))))
195189fveq1d 6883 . . . . . . 7 (𝑔 = 𝐺 → ((𝑔𝑛)‘𝑥) = ((𝐺𝑛)‘𝑥))
196195mpteq2dv 5220 . . . . . 6 (𝑔 = 𝐺 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)))
197196breq1d 5134 . . . . 5 (𝑔 = 𝐺 → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
198197ralbidv 3164 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
199188, 194, 1983anbi123d 1438 . . 3 (𝑔 = 𝐺 → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ↔ (𝐺:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
200187, 199spcev 3590 . 2 ((𝐺:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
2015, 7, 185, 200syl3anc 1373 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  ifcif 4505   class class class wbr 5124  cmpt 5206  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  r cofr 7675  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271   < clt 11274  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  cz 12593  cuz 12857  [,)cico 13369  [,]cicc 13370  cfl 13812  cexp 14084  abscabs 15258  cli 15505  MblFncmbf 25572  1citg1 25573  0𝑝c0p 25627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-rest 17441  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-cmp 23330  df-ovol 25422  df-vol 25423  df-mbf 25577  df-itg1 25578  df-0p 25628
This theorem is referenced by:  mbfi1fseq  25679
  Copyright terms: Public domain W3C validator