MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem6 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem6 25621
Description: Lemma for mbfi1fseq 25622. Verify that 𝐺 converges pointwise to 𝐹, and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem6 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑚,𝑛,𝑥,𝑦,𝐹   𝑔,𝐺,𝑛,𝑥   𝑚,𝐽   𝜑,𝑚,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑔)   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦,𝑔,𝑛)

Proof of Theorem mbfi1fseqlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . . 3 (𝜑𝐹 ∈ MblFn)
2 mbfi1fseq.2 . . 3 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 mbfi1fseq.3 . . 3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
4 mbfi1fseq.4 . . 3 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
51, 2, 3, 4mbfi1fseqlem4 25619 . 2 (𝜑𝐺:ℕ⟶dom ∫1)
61, 2, 3, 4mbfi1fseqlem5 25620 . . 3 ((𝜑𝑛 ∈ ℕ) → (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
76ralrimiva 3125 . 2 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
8 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
98recnd 11202 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
109abscld 15405 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℝ)
112ffvelcdmda 7056 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
12 elrege0 13415 . . . . . . . 8 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1311, 12sylib 218 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1413simpld 494 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1510, 14readdcld 11203 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ)
16 arch 12439 . . . . 5 (((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ → ∃𝑘 ∈ ℕ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
1715, 16syl 17 . . . 4 ((𝜑𝑥 ∈ ℝ) → ∃𝑘 ∈ ℕ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
18 eqid 2729 . . . . 5 (ℤ𝑘) = (ℤ𝑘)
19 nnz 12550 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
2019ad2antrl 728 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → 𝑘 ∈ ℤ)
21 nnuz 12836 . . . . . . . 8 ℕ = (ℤ‘1)
22 1zzd 12564 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℤ)
23 halfcn 12396 . . . . . . . . . 10 (1 / 2) ∈ ℂ
2423a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (1 / 2) ∈ ℂ)
25 halfre 12395 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
26 halfge0 12398 . . . . . . . . . . . 12 0 ≤ (1 / 2)
27 absid 15262 . . . . . . . . . . . 12 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2825, 26, 27mp2an 692 . . . . . . . . . . 11 (abs‘(1 / 2)) = (1 / 2)
29 halflt1 12399 . . . . . . . . . . 11 (1 / 2) < 1
3028, 29eqbrtri 5128 . . . . . . . . . 10 (abs‘(1 / 2)) < 1
3130a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (abs‘(1 / 2)) < 1)
3224, 31expcnv 15830 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) ⇝ 0)
3314recnd 11202 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
34 nnex 12192 . . . . . . . . . 10 ℕ ∈ V
3534mptex 7197 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ∈ V
3635a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ∈ V)
37 nnnn0 12449 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
3837adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
39 oveq2 7395 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑗))
40 eqid 2729 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
41 ovex 7420 . . . . . . . . . . 11 ((1 / 2)↑𝑗) ∈ V
4239, 40, 41fvmpt 6968 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗))
4338, 42syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗))
44 expcl 14044 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ)
4523, 38, 44sylancr 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) ∈ ℂ)
4643, 45eqeltrd 2828 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) ∈ ℂ)
4739oveq2d 7403 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝐹𝑥) − ((1 / 2)↑𝑛)) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
48 eqid 2729 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))
49 ovex 7420 . . . . . . . . . . 11 ((𝐹𝑥) − ((1 / 2)↑𝑗)) ∈ V
5047, 48, 49fvmpt 6968 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5150adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5243oveq2d 7403 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗)) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5351, 52eqtr4d 2767 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗)))
5421, 22, 32, 33, 36, 46, 53climsubc2 15605 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ ((𝐹𝑥) − 0))
5533subid1d 11522 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) − 0) = (𝐹𝑥))
5654, 55breqtrd 5133 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹𝑥))
5756adantr 480 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹𝑥))
5834mptex 7197 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ∈ V
5958a1i 11 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ∈ V)
60 simprl 770 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → 𝑘 ∈ ℕ)
61 eluznn 12877 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ)
6260, 61sylan 580 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ)
6362, 50syl 17 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
6414ad2antrr 726 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ ℝ)
6562, 37syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ0)
66 reexpcl 14043 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℝ)
6725, 65, 66sylancr 587 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((1 / 2)↑𝑗) ∈ ℝ)
6864, 67resubcld 11606 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) ∈ ℝ)
6963, 68eqeltrd 2828 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ∈ ℝ)
70 fveq2 6858 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐺𝑛) = (𝐺𝑗))
7170fveq1d 6860 . . . . . . . 8 (𝑛 = 𝑗 → ((𝐺𝑛)‘𝑥) = ((𝐺𝑗)‘𝑥))
72 eqid 2729 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))
73 fvex 6871 . . . . . . . 8 ((𝐺𝑗)‘𝑥) ∈ V
7471, 72, 73fvmpt 6968 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((𝐺𝑗)‘𝑥))
7562, 74syl 17 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((𝐺𝑗)‘𝑥))
765ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝐺:ℕ⟶dom ∫1)
7776, 62ffvelcdmd 7057 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗) ∈ dom ∫1)
78 i1ff 25577 . . . . . . . 8 ((𝐺𝑗) ∈ dom ∫1 → (𝐺𝑗):ℝ⟶ℝ)
7977, 78syl 17 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗):ℝ⟶ℝ)
808ad2antrr 726 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℝ)
8179, 80ffvelcdmd 7057 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐺𝑗)‘𝑥) ∈ ℝ)
8275, 81eqeltrd 2828 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) ∈ ℝ)
8333ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ ℂ)
84 2nn 12259 . . . . . . . . . . . . . 14 2 ∈ ℕ
85 nnexpcl 14039 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
8684, 65, 85sylancr 587 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℕ)
8786nnred 12201 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℝ)
8887recnd 11202 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℂ)
8986nnne0d 12236 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ≠ 0)
9083, 88, 89divcan4d 11964 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) = (𝐹𝑥))
9190eqcomd 2735 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) = (((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)))
92 2cnd 12264 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 2 ∈ ℂ)
93 2ne0 12290 . . . . . . . . . . 11 2 ≠ 0
9493a1i 11 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 2 ≠ 0)
95 eluzelz 12803 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑘) → 𝑗 ∈ ℤ)
9695adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℤ)
9792, 94, 96exprecd 14119 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
9891, 97oveq12d 7405 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗))))
9964, 87remulcld 11204 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ∈ ℝ)
10099recnd 11202 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ∈ ℂ)
101 1cnd 11169 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 1 ∈ ℂ)
102100, 101, 88, 89divsubdird 11997 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗))))
10398, 102eqtr4d 2767 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)))
104 fllep1 13763 . . . . . . . . . 10 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1))
10599, 104syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1))
106 1red 11175 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 1 ∈ ℝ)
107 reflcl 13758 . . . . . . . . . . 11 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ)
10899, 107syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ)
10999, 106, 108lesubaddd 11775 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1)))
110105, 109mpbird 257 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))))
111 peano2rem 11489 . . . . . . . . . 10 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ)
11299, 111syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ)
11386nngt0d 12235 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 < (2↑𝑗))
114 lediv1 12048 . . . . . . . . 9 (((((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ ∧ (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 < (2↑𝑗))) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗))))
115112, 108, 87, 113, 114syl112anc 1376 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗))))
116110, 115mpbid 232 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
117103, 116eqbrtrd 5129 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
1181, 2, 3, 4mbfi1fseqlem2 25617 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐺𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)))
11962, 118syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)))
120119fveq1d 6860 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐺𝑗)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥))
121 ovex 7420 . . . . . . . . . . 11 (𝑗𝐽𝑥) ∈ V
122 vex 3451 . . . . . . . . . . 11 𝑗 ∈ V
123121, 122ifex 4539 . . . . . . . . . 10 if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) ∈ V
124 c0ex 11168 . . . . . . . . . 10 0 ∈ V
125123, 124ifex 4539 . . . . . . . . 9 if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V
126 eqid 2729 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
127126fvmpt2 6979 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
12880, 125, 127sylancl 586 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
12975, 120, 1283eqtrd 2768 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
13010ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ∈ ℝ)
13115ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ)
13262nnred 12201 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℝ)
13311ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ (0[,)+∞))
134133, 12sylib 218 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
135134simprd 495 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 ≤ (𝐹𝑥))
136130, 64addge01d 11766 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (0 ≤ (𝐹𝑥) ↔ (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥))))
137135, 136mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥)))
13860adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘 ∈ ℕ)
139138nnred 12201 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
140 simplrr 777 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
141131, 139, 140ltled 11322 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ≤ 𝑘)
142 eluzle 12806 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑘) → 𝑘𝑗)
143142adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘𝑗)
144131, 139, 132, 141, 143letrd 11331 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ≤ 𝑗)
145130, 131, 132, 137, 144letrd 11331 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ≤ 𝑗)
14680, 132absled 15399 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) ≤ 𝑗 ↔ (-𝑗𝑥𝑥𝑗)))
147145, 146mpbid 232 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (-𝑗𝑥𝑥𝑗))
148147simpld 494 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → -𝑗𝑥)
149147simprd 495 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥𝑗)
150132renegcld 11605 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → -𝑗 ∈ ℝ)
151 elicc2 13372 . . . . . . . . . 10 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗𝑥𝑥𝑗)))
152150, 132, 151syl2anc 584 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗𝑥𝑥𝑗)))
15380, 148, 149, 152mpbir3and 1343 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ (-𝑗[,]𝑗))
154153iftrued 4496 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) = if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗))
155 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑗𝑦 = 𝑥) → 𝑦 = 𝑥)
156155fveq2d 6862 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑗𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
157 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑗𝑦 = 𝑥) → 𝑚 = 𝑗)
158157oveq2d 7403 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑗𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑗))
159156, 158oveq12d 7405 . . . . . . . . . . . . . 14 ((𝑚 = 𝑗𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝑗)))
160159fveq2d 6862 . . . . . . . . . . . . 13 ((𝑚 = 𝑗𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝑗))))
161160, 158oveq12d 7405 . . . . . . . . . . . 12 ((𝑚 = 𝑗𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
162 ovex 7420 . . . . . . . . . . . 12 ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ V
163161, 3, 162ovmpoa 7544 . . . . . . . . . . 11 ((𝑗 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑗𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
16462, 80, 163syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑗𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
165108, 86nndivred 12240 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ ℝ)
166 flle 13761 . . . . . . . . . . . . 13 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗)))
16799, 166syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗)))
168 ledivmul2 12062 . . . . . . . . . . . . 13 (((⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 < (2↑𝑗))) → (((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥) ↔ (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗))))
169108, 64, 87, 113, 168syl112anc 1376 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥) ↔ (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗))))
170167, 169mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥))
1719ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℂ)
172171absge0d 15413 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 ≤ (abs‘𝑥))
17364, 130addge02d 11767 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (0 ≤ (abs‘𝑥) ↔ (𝐹𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥))))
174172, 173mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥)))
17564, 131, 132, 174, 144letrd 11331 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ≤ 𝑗)
176165, 64, 132, 170, 175letrd 11331 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ 𝑗)
177164, 176eqbrtrd 5129 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑗𝐽𝑥) ≤ 𝑗)
178177iftrued 4496 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = (𝑗𝐽𝑥))
179178, 164eqtrd 2764 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
180129, 154, 1793eqtrd 2768 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
181117, 63, 1803brtr4d 5139 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗))
182180, 170eqbrtrd 5129 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) ≤ (𝐹𝑥))
18318, 20, 57, 59, 69, 82, 181, 182climsqz 15607 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18417, 183rexlimddv 3140 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
185184ralrimiva 3125 . 2 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18634mptex 7197 . . . 4 (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ∈ V
1874, 186eqeltri 2824 . . 3 𝐺 ∈ V
188 feq1 6666 . . . 4 (𝑔 = 𝐺 → (𝑔:ℕ⟶dom ∫1𝐺:ℕ⟶dom ∫1))
189 fveq1 6857 . . . . . . 7 (𝑔 = 𝐺 → (𝑔𝑛) = (𝐺𝑛))
190189breq2d 5119 . . . . . 6 (𝑔 = 𝐺 → (0𝑝r ≤ (𝑔𝑛) ↔ 0𝑝r ≤ (𝐺𝑛)))
191 fveq1 6857 . . . . . . 7 (𝑔 = 𝐺 → (𝑔‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1)))
192189, 191breq12d 5120 . . . . . 6 (𝑔 = 𝐺 → ((𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1)) ↔ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
193190, 192anbi12d 632 . . . . 5 (𝑔 = 𝐺 → ((0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))))
194193ralbidv 3156 . . . 4 (𝑔 = 𝐺 → (∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))))
195189fveq1d 6860 . . . . . . 7 (𝑔 = 𝐺 → ((𝑔𝑛)‘𝑥) = ((𝐺𝑛)‘𝑥))
196195mpteq2dv 5201 . . . . . 6 (𝑔 = 𝐺 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)))
197196breq1d 5117 . . . . 5 (𝑔 = 𝐺 → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
198197ralbidv 3156 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
199188, 194, 1983anbi123d 1438 . . 3 (𝑔 = 𝐺 → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ↔ (𝐺:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
200187, 199spcev 3572 . 2 ((𝐺:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
2015, 7, 185, 200syl3anc 1373 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  ifcif 4488   class class class wbr 5107  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  r cofr 7652  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  [,)cico 13308  [,]cicc 13309  cfl 13752  cexp 14026  abscabs 15200  cli 15450  MblFncmbf 25515  1citg1 25516  0𝑝c0p 25570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-0p 25571
This theorem is referenced by:  mbfi1fseq  25622
  Copyright terms: Public domain W3C validator