MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem6 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem6 24473
Description: Lemma for mbfi1fseq 24474. Verify that 𝐺 converges pointwise to 𝐹, and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem6 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑚,𝑛,𝑥,𝑦,𝐹   𝑔,𝐺,𝑛,𝑥   𝑚,𝐽   𝜑,𝑚,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑔)   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦,𝑔,𝑛)

Proof of Theorem mbfi1fseqlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . . 3 (𝜑𝐹 ∈ MblFn)
2 mbfi1fseq.2 . . 3 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 mbfi1fseq.3 . . 3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
4 mbfi1fseq.4 . . 3 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
51, 2, 3, 4mbfi1fseqlem4 24471 . 2 (𝜑𝐺:ℕ⟶dom ∫1)
61, 2, 3, 4mbfi1fseqlem5 24472 . . 3 ((𝜑𝑛 ∈ ℕ) → (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
76ralrimiva 3096 . 2 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
8 simpr 488 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
98recnd 10747 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
109abscld 14886 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℝ)
112ffvelrnda 6861 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
12 elrege0 12928 . . . . . . . 8 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1311, 12sylib 221 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1413simpld 498 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1510, 14readdcld 10748 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ)
16 arch 11973 . . . . 5 (((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ → ∃𝑘 ∈ ℕ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
1715, 16syl 17 . . . 4 ((𝜑𝑥 ∈ ℝ) → ∃𝑘 ∈ ℕ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
18 eqid 2738 . . . . 5 (ℤ𝑘) = (ℤ𝑘)
19 nnz 12085 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
2019ad2antrl 728 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → 𝑘 ∈ ℤ)
21 nnuz 12363 . . . . . . . 8 ℕ = (ℤ‘1)
22 1zzd 12094 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℤ)
23 halfcn 11931 . . . . . . . . . 10 (1 / 2) ∈ ℂ
2423a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (1 / 2) ∈ ℂ)
25 halfre 11930 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
26 halfge0 11933 . . . . . . . . . . . 12 0 ≤ (1 / 2)
27 absid 14746 . . . . . . . . . . . 12 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2825, 26, 27mp2an 692 . . . . . . . . . . 11 (abs‘(1 / 2)) = (1 / 2)
29 halflt1 11934 . . . . . . . . . . 11 (1 / 2) < 1
3028, 29eqbrtri 5051 . . . . . . . . . 10 (abs‘(1 / 2)) < 1
3130a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (abs‘(1 / 2)) < 1)
3224, 31expcnv 15312 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) ⇝ 0)
3314recnd 10747 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
34 nnex 11722 . . . . . . . . . 10 ℕ ∈ V
3534mptex 6996 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ∈ V
3635a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ∈ V)
37 nnnn0 11983 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
3837adantl 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
39 oveq2 7178 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑗))
40 eqid 2738 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
41 ovex 7203 . . . . . . . . . . 11 ((1 / 2)↑𝑗) ∈ V
4239, 40, 41fvmpt 6775 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗))
4338, 42syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗))
44 expcl 13539 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ)
4523, 38, 44sylancr 590 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) ∈ ℂ)
4643, 45eqeltrd 2833 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) ∈ ℂ)
4739oveq2d 7186 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝐹𝑥) − ((1 / 2)↑𝑛)) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
48 eqid 2738 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))
49 ovex 7203 . . . . . . . . . . 11 ((𝐹𝑥) − ((1 / 2)↑𝑗)) ∈ V
5047, 48, 49fvmpt 6775 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5150adantl 485 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5243oveq2d 7186 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗)) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5351, 52eqtr4d 2776 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗)))
5421, 22, 32, 33, 36, 46, 53climsubc2 15086 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ ((𝐹𝑥) − 0))
5533subid1d 11064 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) − 0) = (𝐹𝑥))
5654, 55breqtrd 5056 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹𝑥))
5756adantr 484 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹𝑥))
5834mptex 6996 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ∈ V
5958a1i 11 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ∈ V)
60 simprl 771 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → 𝑘 ∈ ℕ)
61 eluznn 12400 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ)
6260, 61sylan 583 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ)
6362, 50syl 17 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
6414ad2antrr 726 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ ℝ)
6562, 37syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ0)
66 reexpcl 13538 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℝ)
6725, 65, 66sylancr 590 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((1 / 2)↑𝑗) ∈ ℝ)
6864, 67resubcld 11146 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) ∈ ℝ)
6963, 68eqeltrd 2833 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ∈ ℝ)
70 fveq2 6674 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐺𝑛) = (𝐺𝑗))
7170fveq1d 6676 . . . . . . . 8 (𝑛 = 𝑗 → ((𝐺𝑛)‘𝑥) = ((𝐺𝑗)‘𝑥))
72 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))
73 fvex 6687 . . . . . . . 8 ((𝐺𝑗)‘𝑥) ∈ V
7471, 72, 73fvmpt 6775 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((𝐺𝑗)‘𝑥))
7562, 74syl 17 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((𝐺𝑗)‘𝑥))
765ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝐺:ℕ⟶dom ∫1)
7776, 62ffvelrnd 6862 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗) ∈ dom ∫1)
78 i1ff 24428 . . . . . . . 8 ((𝐺𝑗) ∈ dom ∫1 → (𝐺𝑗):ℝ⟶ℝ)
7977, 78syl 17 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗):ℝ⟶ℝ)
808ad2antrr 726 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℝ)
8179, 80ffvelrnd 6862 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐺𝑗)‘𝑥) ∈ ℝ)
8275, 81eqeltrd 2833 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) ∈ ℝ)
8333ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ ℂ)
84 2nn 11789 . . . . . . . . . . . . . 14 2 ∈ ℕ
85 nnexpcl 13534 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
8684, 65, 85sylancr 590 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℕ)
8786nnred 11731 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℝ)
8887recnd 10747 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℂ)
8986nnne0d 11766 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ≠ 0)
9083, 88, 89divcan4d 11500 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) = (𝐹𝑥))
9190eqcomd 2744 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) = (((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)))
92 2cnd 11794 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 2 ∈ ℂ)
93 2ne0 11820 . . . . . . . . . . 11 2 ≠ 0
9493a1i 11 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 2 ≠ 0)
95 eluzelz 12334 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑘) → 𝑗 ∈ ℤ)
9695adantl 485 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℤ)
9792, 94, 96exprecd 13610 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
9891, 97oveq12d 7188 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗))))
9964, 87remulcld 10749 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ∈ ℝ)
10099recnd 10747 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ∈ ℂ)
101 1cnd 10714 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 1 ∈ ℂ)
102100, 101, 88, 89divsubdird 11533 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗))))
10398, 102eqtr4d 2776 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)))
104 fllep1 13262 . . . . . . . . . 10 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1))
10599, 104syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1))
106 1red 10720 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 1 ∈ ℝ)
107 reflcl 13257 . . . . . . . . . . 11 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ)
10899, 107syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ)
10999, 106, 108lesubaddd 11315 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1)))
110105, 109mpbird 260 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))))
111 peano2rem 11031 . . . . . . . . . 10 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ)
11299, 111syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ)
11386nngt0d 11765 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 < (2↑𝑗))
114 lediv1 11583 . . . . . . . . 9 (((((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ ∧ (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 < (2↑𝑗))) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗))))
115112, 108, 87, 113, 114syl112anc 1375 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗))))
116110, 115mpbid 235 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
117103, 116eqbrtrd 5052 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
1181, 2, 3, 4mbfi1fseqlem2 24469 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐺𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)))
11962, 118syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)))
120119fveq1d 6676 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐺𝑗)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥))
121 ovex 7203 . . . . . . . . . . 11 (𝑗𝐽𝑥) ∈ V
122 vex 3402 . . . . . . . . . . 11 𝑗 ∈ V
123121, 122ifex 4464 . . . . . . . . . 10 if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) ∈ V
124 c0ex 10713 . . . . . . . . . 10 0 ∈ V
125123, 124ifex 4464 . . . . . . . . 9 if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V
126 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
127126fvmpt2 6786 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
12880, 125, 127sylancl 589 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
12975, 120, 1283eqtrd 2777 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
13010ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ∈ ℝ)
13115ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ)
13262nnred 11731 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℝ)
13311ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ (0[,)+∞))
134133, 12sylib 221 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
135134simprd 499 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 ≤ (𝐹𝑥))
136130, 64addge01d 11306 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (0 ≤ (𝐹𝑥) ↔ (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥))))
137135, 136mpbid 235 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥)))
13860adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘 ∈ ℕ)
139138nnred 11731 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
140 simplrr 778 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
141131, 139, 140ltled 10866 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ≤ 𝑘)
142 eluzle 12337 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑘) → 𝑘𝑗)
143142adantl 485 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘𝑗)
144131, 139, 132, 141, 143letrd 10875 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ≤ 𝑗)
145130, 131, 132, 137, 144letrd 10875 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ≤ 𝑗)
14680, 132absled 14880 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) ≤ 𝑗 ↔ (-𝑗𝑥𝑥𝑗)))
147145, 146mpbid 235 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (-𝑗𝑥𝑥𝑗))
148147simpld 498 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → -𝑗𝑥)
149147simprd 499 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥𝑗)
150132renegcld 11145 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → -𝑗 ∈ ℝ)
151 elicc2 12886 . . . . . . . . . 10 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗𝑥𝑥𝑗)))
152150, 132, 151syl2anc 587 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗𝑥𝑥𝑗)))
15380, 148, 149, 152mpbir3and 1343 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ (-𝑗[,]𝑗))
154153iftrued 4422 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) = if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗))
155 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑗𝑦 = 𝑥) → 𝑦 = 𝑥)
156155fveq2d 6678 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑗𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
157 simpl 486 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑗𝑦 = 𝑥) → 𝑚 = 𝑗)
158157oveq2d 7186 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑗𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑗))
159156, 158oveq12d 7188 . . . . . . . . . . . . . 14 ((𝑚 = 𝑗𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝑗)))
160159fveq2d 6678 . . . . . . . . . . . . 13 ((𝑚 = 𝑗𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝑗))))
161160, 158oveq12d 7188 . . . . . . . . . . . 12 ((𝑚 = 𝑗𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
162 ovex 7203 . . . . . . . . . . . 12 ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ V
163161, 3, 162ovmpoa 7320 . . . . . . . . . . 11 ((𝑗 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑗𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
16462, 80, 163syl2anc 587 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑗𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
165108, 86nndivred 11770 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ ℝ)
166 flle 13260 . . . . . . . . . . . . 13 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗)))
16799, 166syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗)))
168 ledivmul2 11597 . . . . . . . . . . . . 13 (((⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 < (2↑𝑗))) → (((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥) ↔ (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗))))
169108, 64, 87, 113, 168syl112anc 1375 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥) ↔ (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗))))
170167, 169mpbird 260 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥))
1719ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℂ)
172171absge0d 14894 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 ≤ (abs‘𝑥))
17364, 130addge02d 11307 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (0 ≤ (abs‘𝑥) ↔ (𝐹𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥))))
174172, 173mpbid 235 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥)))
17564, 131, 132, 174, 144letrd 10875 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ≤ 𝑗)
176165, 64, 132, 170, 175letrd 10875 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ 𝑗)
177164, 176eqbrtrd 5052 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑗𝐽𝑥) ≤ 𝑗)
178177iftrued 4422 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = (𝑗𝐽𝑥))
179178, 164eqtrd 2773 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
180129, 154, 1793eqtrd 2777 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
181117, 63, 1803brtr4d 5062 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗))
182180, 170eqbrtrd 5052 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) ≤ (𝐹𝑥))
18318, 20, 57, 59, 69, 82, 181, 182climsqz 15088 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18417, 183rexlimddv 3201 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
185184ralrimiva 3096 . 2 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18634mptex 6996 . . . 4 (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ∈ V
1874, 186eqeltri 2829 . . 3 𝐺 ∈ V
188 feq1 6485 . . . 4 (𝑔 = 𝐺 → (𝑔:ℕ⟶dom ∫1𝐺:ℕ⟶dom ∫1))
189 fveq1 6673 . . . . . . 7 (𝑔 = 𝐺 → (𝑔𝑛) = (𝐺𝑛))
190189breq2d 5042 . . . . . 6 (𝑔 = 𝐺 → (0𝑝r ≤ (𝑔𝑛) ↔ 0𝑝r ≤ (𝐺𝑛)))
191 fveq1 6673 . . . . . . 7 (𝑔 = 𝐺 → (𝑔‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1)))
192189, 191breq12d 5043 . . . . . 6 (𝑔 = 𝐺 → ((𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1)) ↔ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
193190, 192anbi12d 634 . . . . 5 (𝑔 = 𝐺 → ((0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))))
194193ralbidv 3109 . . . 4 (𝑔 = 𝐺 → (∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))))
195189fveq1d 6676 . . . . . . 7 (𝑔 = 𝐺 → ((𝑔𝑛)‘𝑥) = ((𝐺𝑛)‘𝑥))
196195mpteq2dv 5126 . . . . . 6 (𝑔 = 𝐺 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)))
197196breq1d 5040 . . . . 5 (𝑔 = 𝐺 → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
198197ralbidv 3109 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
199188, 194, 1983anbi123d 1437 . . 3 (𝑔 = 𝐺 → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ↔ (𝐺:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
200187, 199spcev 3510 . 2 ((𝐺:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
2015, 7, 185, 200syl3anc 1372 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wex 1786  wcel 2114  wne 2934  wral 3053  wrex 3054  Vcvv 3398  ifcif 4414   class class class wbr 5030  cmpt 5110  dom cdm 5525  wf 6335  cfv 6339  (class class class)co 7170  cmpo 7172  r cofr 7424  cc 10613  cr 10614  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620  +∞cpnf 10750   < clt 10753  cle 10754  cmin 10948  -cneg 10949   / cdiv 11375  cn 11716  2c2 11771  0cn0 11976  cz 12062  cuz 12324  [,)cico 12823  [,]cicc 12824  cfl 13251  cexp 13521  abscabs 14683  cli 14931  MblFncmbf 24366  1citg1 24367  0𝑝c0p 24421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-ofr 7426  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-rlim 14936  df-sum 15136  df-rest 16799  df-topgen 16820  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-top 21645  df-topon 21662  df-bases 21697  df-cmp 22138  df-ovol 24216  df-vol 24217  df-mbf 24371  df-itg1 24372  df-0p 24422
This theorem is referenced by:  mbfi1fseq  24474
  Copyright terms: Public domain W3C validator