MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem6 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem6 24315
Description: Lemma for mbfi1fseq 24316. Verify that 𝐺 converges pointwise to 𝐹, and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem6 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑚,𝑛,𝑥,𝑦,𝐹   𝑔,𝐺,𝑛,𝑥   𝑚,𝐽   𝜑,𝑚,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑔)   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦,𝑔,𝑛)

Proof of Theorem mbfi1fseqlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . . 3 (𝜑𝐹 ∈ MblFn)
2 mbfi1fseq.2 . . 3 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 mbfi1fseq.3 . . 3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
4 mbfi1fseq.4 . . 3 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
51, 2, 3, 4mbfi1fseqlem4 24313 . 2 (𝜑𝐺:ℕ⟶dom ∫1)
61, 2, 3, 4mbfi1fseqlem5 24314 . . 3 ((𝜑𝑛 ∈ ℕ) → (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
76ralrimiva 3182 . 2 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
8 simpr 487 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
98recnd 10663 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
109abscld 14790 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℝ)
112ffvelrnda 6846 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
12 elrege0 12836 . . . . . . . 8 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1311, 12sylib 220 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1413simpld 497 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1510, 14readdcld 10664 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ)
16 arch 11888 . . . . 5 (((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ → ∃𝑘 ∈ ℕ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
1715, 16syl 17 . . . 4 ((𝜑𝑥 ∈ ℝ) → ∃𝑘 ∈ ℕ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
18 eqid 2821 . . . . 5 (ℤ𝑘) = (ℤ𝑘)
19 nnz 11998 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
2019ad2antrl 726 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → 𝑘 ∈ ℤ)
21 nnuz 12275 . . . . . . . 8 ℕ = (ℤ‘1)
22 1zzd 12007 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℤ)
23 halfcn 11846 . . . . . . . . . 10 (1 / 2) ∈ ℂ
2423a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (1 / 2) ∈ ℂ)
25 halfre 11845 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
26 halfge0 11848 . . . . . . . . . . . 12 0 ≤ (1 / 2)
27 absid 14650 . . . . . . . . . . . 12 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2825, 26, 27mp2an 690 . . . . . . . . . . 11 (abs‘(1 / 2)) = (1 / 2)
29 halflt1 11849 . . . . . . . . . . 11 (1 / 2) < 1
3028, 29eqbrtri 5080 . . . . . . . . . 10 (abs‘(1 / 2)) < 1
3130a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (abs‘(1 / 2)) < 1)
3224, 31expcnv 15213 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) ⇝ 0)
3314recnd 10663 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
34 nnex 11638 . . . . . . . . . 10 ℕ ∈ V
3534mptex 6980 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ∈ V
3635a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ∈ V)
37 nnnn0 11898 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
3837adantl 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
39 oveq2 7158 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑗))
40 eqid 2821 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
41 ovex 7183 . . . . . . . . . . 11 ((1 / 2)↑𝑗) ∈ V
4239, 40, 41fvmpt 6763 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗))
4338, 42syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗))
44 expcl 13441 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ)
4523, 38, 44sylancr 589 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) ∈ ℂ)
4643, 45eqeltrd 2913 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) ∈ ℂ)
4739oveq2d 7166 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝐹𝑥) − ((1 / 2)↑𝑛)) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
48 eqid 2821 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))
49 ovex 7183 . . . . . . . . . . 11 ((𝐹𝑥) − ((1 / 2)↑𝑗)) ∈ V
5047, 48, 49fvmpt 6763 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5150adantl 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5243oveq2d 7166 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗)) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5351, 52eqtr4d 2859 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗)))
5421, 22, 32, 33, 36, 46, 53climsubc2 14989 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ ((𝐹𝑥) − 0))
5533subid1d 10980 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) − 0) = (𝐹𝑥))
5654, 55breqtrd 5085 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹𝑥))
5756adantr 483 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹𝑥))
5834mptex 6980 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ∈ V
5958a1i 11 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ∈ V)
60 simprl 769 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → 𝑘 ∈ ℕ)
61 eluznn 12312 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ)
6260, 61sylan 582 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ)
6362, 50syl 17 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
6414ad2antrr 724 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ ℝ)
6562, 37syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ0)
66 reexpcl 13440 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℝ)
6725, 65, 66sylancr 589 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((1 / 2)↑𝑗) ∈ ℝ)
6864, 67resubcld 11062 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) ∈ ℝ)
6963, 68eqeltrd 2913 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ∈ ℝ)
70 fveq2 6665 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐺𝑛) = (𝐺𝑗))
7170fveq1d 6667 . . . . . . . 8 (𝑛 = 𝑗 → ((𝐺𝑛)‘𝑥) = ((𝐺𝑗)‘𝑥))
72 eqid 2821 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))
73 fvex 6678 . . . . . . . 8 ((𝐺𝑗)‘𝑥) ∈ V
7471, 72, 73fvmpt 6763 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((𝐺𝑗)‘𝑥))
7562, 74syl 17 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((𝐺𝑗)‘𝑥))
765ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝐺:ℕ⟶dom ∫1)
7776, 62ffvelrnd 6847 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗) ∈ dom ∫1)
78 i1ff 24271 . . . . . . . 8 ((𝐺𝑗) ∈ dom ∫1 → (𝐺𝑗):ℝ⟶ℝ)
7977, 78syl 17 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗):ℝ⟶ℝ)
808ad2antrr 724 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℝ)
8179, 80ffvelrnd 6847 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐺𝑗)‘𝑥) ∈ ℝ)
8275, 81eqeltrd 2913 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) ∈ ℝ)
8333ad2antrr 724 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ ℂ)
84 2nn 11704 . . . . . . . . . . . . . 14 2 ∈ ℕ
85 nnexpcl 13436 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
8684, 65, 85sylancr 589 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℕ)
8786nnred 11647 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℝ)
8887recnd 10663 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℂ)
8986nnne0d 11681 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ≠ 0)
9083, 88, 89divcan4d 11416 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) = (𝐹𝑥))
9190eqcomd 2827 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) = (((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)))
92 2cnd 11709 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 2 ∈ ℂ)
93 2ne0 11735 . . . . . . . . . . 11 2 ≠ 0
9493a1i 11 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 2 ≠ 0)
95 eluzelz 12247 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑘) → 𝑗 ∈ ℤ)
9695adantl 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℤ)
9792, 94, 96exprecd 13512 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
9891, 97oveq12d 7168 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗))))
9964, 87remulcld 10665 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ∈ ℝ)
10099recnd 10663 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ∈ ℂ)
101 1cnd 10630 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 1 ∈ ℂ)
102100, 101, 88, 89divsubdird 11449 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗))))
10398, 102eqtr4d 2859 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)))
104 fllep1 13165 . . . . . . . . . 10 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1))
10599, 104syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1))
106 1red 10636 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 1 ∈ ℝ)
107 reflcl 13160 . . . . . . . . . . 11 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ)
10899, 107syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ)
10999, 106, 108lesubaddd 11231 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1)))
110105, 109mpbird 259 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))))
111 peano2rem 10947 . . . . . . . . . 10 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ)
11299, 111syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ)
11386nngt0d 11680 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 < (2↑𝑗))
114 lediv1 11499 . . . . . . . . 9 (((((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ ∧ (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 < (2↑𝑗))) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗))))
115112, 108, 87, 113, 114syl112anc 1370 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗))))
116110, 115mpbid 234 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
117103, 116eqbrtrd 5081 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
1181, 2, 3, 4mbfi1fseqlem2 24311 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐺𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)))
11962, 118syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)))
120119fveq1d 6667 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐺𝑗)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥))
121 ovex 7183 . . . . . . . . . . 11 (𝑗𝐽𝑥) ∈ V
122 vex 3498 . . . . . . . . . . 11 𝑗 ∈ V
123121, 122ifex 4515 . . . . . . . . . 10 if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) ∈ V
124 c0ex 10629 . . . . . . . . . 10 0 ∈ V
125123, 124ifex 4515 . . . . . . . . 9 if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V
126 eqid 2821 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
127126fvmpt2 6774 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
12880, 125, 127sylancl 588 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
12975, 120, 1283eqtrd 2860 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
13010ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ∈ ℝ)
13115ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ)
13262nnred 11647 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℝ)
13311ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ (0[,)+∞))
134133, 12sylib 220 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
135134simprd 498 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 ≤ (𝐹𝑥))
136130, 64addge01d 11222 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (0 ≤ (𝐹𝑥) ↔ (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥))))
137135, 136mpbid 234 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥)))
13860adantr 483 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘 ∈ ℕ)
139138nnred 11647 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
140 simplrr 776 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
141131, 139, 140ltled 10782 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ≤ 𝑘)
142 eluzle 12250 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑘) → 𝑘𝑗)
143142adantl 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘𝑗)
144131, 139, 132, 141, 143letrd 10791 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ≤ 𝑗)
145130, 131, 132, 137, 144letrd 10791 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ≤ 𝑗)
14680, 132absled 14784 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) ≤ 𝑗 ↔ (-𝑗𝑥𝑥𝑗)))
147145, 146mpbid 234 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (-𝑗𝑥𝑥𝑗))
148147simpld 497 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → -𝑗𝑥)
149147simprd 498 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥𝑗)
150132renegcld 11061 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → -𝑗 ∈ ℝ)
151 elicc2 12795 . . . . . . . . . 10 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗𝑥𝑥𝑗)))
152150, 132, 151syl2anc 586 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗𝑥𝑥𝑗)))
15380, 148, 149, 152mpbir3and 1338 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ (-𝑗[,]𝑗))
154153iftrued 4475 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) = if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗))
155 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑗𝑦 = 𝑥) → 𝑦 = 𝑥)
156155fveq2d 6669 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑗𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
157 simpl 485 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑗𝑦 = 𝑥) → 𝑚 = 𝑗)
158157oveq2d 7166 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑗𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑗))
159156, 158oveq12d 7168 . . . . . . . . . . . . . 14 ((𝑚 = 𝑗𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝑗)))
160159fveq2d 6669 . . . . . . . . . . . . 13 ((𝑚 = 𝑗𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝑗))))
161160, 158oveq12d 7168 . . . . . . . . . . . 12 ((𝑚 = 𝑗𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
162 ovex 7183 . . . . . . . . . . . 12 ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ V
163161, 3, 162ovmpoa 7299 . . . . . . . . . . 11 ((𝑗 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑗𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
16462, 80, 163syl2anc 586 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑗𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
165108, 86nndivred 11685 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ ℝ)
166 flle 13163 . . . . . . . . . . . . 13 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗)))
16799, 166syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗)))
168 ledivmul2 11513 . . . . . . . . . . . . 13 (((⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 < (2↑𝑗))) → (((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥) ↔ (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗))))
169108, 64, 87, 113, 168syl112anc 1370 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥) ↔ (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗))))
170167, 169mpbird 259 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥))
1719ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℂ)
172171absge0d 14798 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 ≤ (abs‘𝑥))
17364, 130addge02d 11223 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (0 ≤ (abs‘𝑥) ↔ (𝐹𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥))))
174172, 173mpbid 234 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥)))
17564, 131, 132, 174, 144letrd 10791 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ≤ 𝑗)
176165, 64, 132, 170, 175letrd 10791 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ 𝑗)
177164, 176eqbrtrd 5081 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑗𝐽𝑥) ≤ 𝑗)
178177iftrued 4475 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = (𝑗𝐽𝑥))
179178, 164eqtrd 2856 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
180129, 154, 1793eqtrd 2860 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
181117, 63, 1803brtr4d 5091 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗))
182180, 170eqbrtrd 5081 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) ≤ (𝐹𝑥))
18318, 20, 57, 59, 69, 82, 181, 182climsqz 14991 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18417, 183rexlimddv 3291 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
185184ralrimiva 3182 . 2 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18634mptex 6980 . . . 4 (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ∈ V
1874, 186eqeltri 2909 . . 3 𝐺 ∈ V
188 feq1 6490 . . . 4 (𝑔 = 𝐺 → (𝑔:ℕ⟶dom ∫1𝐺:ℕ⟶dom ∫1))
189 fveq1 6664 . . . . . . 7 (𝑔 = 𝐺 → (𝑔𝑛) = (𝐺𝑛))
190189breq2d 5071 . . . . . 6 (𝑔 = 𝐺 → (0𝑝r ≤ (𝑔𝑛) ↔ 0𝑝r ≤ (𝐺𝑛)))
191 fveq1 6664 . . . . . . 7 (𝑔 = 𝐺 → (𝑔‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1)))
192189, 191breq12d 5072 . . . . . 6 (𝑔 = 𝐺 → ((𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1)) ↔ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
193190, 192anbi12d 632 . . . . 5 (𝑔 = 𝐺 → ((0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))))
194193ralbidv 3197 . . . 4 (𝑔 = 𝐺 → (∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))))
195189fveq1d 6667 . . . . . . 7 (𝑔 = 𝐺 → ((𝑔𝑛)‘𝑥) = ((𝐺𝑛)‘𝑥))
196195mpteq2dv 5155 . . . . . 6 (𝑔 = 𝐺 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)))
197196breq1d 5069 . . . . 5 (𝑔 = 𝐺 → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
198197ralbidv 3197 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
199188, 194, 1983anbi123d 1432 . . 3 (𝑔 = 𝐺 → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ↔ (𝐺:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
200187, 199spcev 3607 . 2 ((𝐺:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
2015, 7, 185, 200syl3anc 1367 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3495  ifcif 4467   class class class wbr 5059  cmpt 5139  dom cdm 5550  wf 6346  cfv 6350  (class class class)co 7150  cmpo 7152  r cofr 7402  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666   < clt 10669  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  cn 11632  2c2 11686  0cn0 11891  cz 11975  cuz 12237  [,)cico 12734  [,]cicc 12735  cfl 13154  cexp 13423  abscabs 14587  cli 14835  MblFncmbf 24209  1citg1 24210  0𝑝c0p 24264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215  df-0p 24265
This theorem is referenced by:  mbfi1fseq  24316
  Copyright terms: Public domain W3C validator