| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mbfi1fseq.1 | . . 3
⊢ (𝜑 → 𝐹 ∈ MblFn) | 
| 2 |  | mbfi1fseq.2 | . . 3
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | 
| 3 |  | mbfi1fseq.3 | . . 3
⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | 
| 4 |  | mbfi1fseq.4 | . . 3
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) | 
| 5 | 1, 2, 3, 4 | mbfi1fseqlem4 25754 | . 2
⊢ (𝜑 → 𝐺:ℕ⟶dom
∫1) | 
| 6 | 1, 2, 3, 4 | mbfi1fseqlem5 25755 | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(0𝑝 ∘r ≤ (𝐺‘𝑛) ∧ (𝐺‘𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))) | 
| 7 | 6 | ralrimiva 3145 | . 2
⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝐺‘𝑛) ∧ (𝐺‘𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))) | 
| 8 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | 
| 9 | 8 | recnd 11290 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) | 
| 10 | 9 | abscld 15476 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (abs‘𝑥) ∈
ℝ) | 
| 11 | 2 | ffvelcdmda 7103 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) | 
| 12 |  | elrege0 13495 | . . . . . . . 8
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | 
| 13 | 11, 12 | sylib 218 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | 
| 14 | 13 | simpld 494 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | 
| 15 | 10, 14 | readdcld 11291 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((abs‘𝑥) + (𝐹‘𝑥)) ∈ ℝ) | 
| 16 |  | arch 12525 | . . . . 5
⊢
(((abs‘𝑥) +
(𝐹‘𝑥)) ∈ ℝ → ∃𝑘 ∈ ℕ
((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘) | 
| 17 | 15, 16 | syl 17 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑘 ∈ ℕ
((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘) | 
| 18 |  | eqid 2736 | . . . . 5
⊢
(ℤ≥‘𝑘) = (ℤ≥‘𝑘) | 
| 19 |  | nnz 12636 | . . . . . 6
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) | 
| 20 | 19 | ad2antrl 728 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) → 𝑘 ∈ ℤ) | 
| 21 |  | nnuz 12922 | . . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) | 
| 22 |  | 1zzd 12650 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 1 ∈
ℤ) | 
| 23 |  | halfcn 12482 | . . . . . . . . . 10
⊢ (1 / 2)
∈ ℂ | 
| 24 | 23 | a1i 11 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (1 / 2) ∈
ℂ) | 
| 25 |  | halfre 12481 | . . . . . . . . . . . 12
⊢ (1 / 2)
∈ ℝ | 
| 26 |  | halfge0 12484 | . . . . . . . . . . . 12
⊢ 0 ≤ (1
/ 2) | 
| 27 |  | absid 15336 | . . . . . . . . . . . 12
⊢ (((1 / 2)
∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 /
2)) | 
| 28 | 25, 26, 27 | mp2an 692 | . . . . . . . . . . 11
⊢
(abs‘(1 / 2)) = (1 / 2) | 
| 29 |  | halflt1 12485 | . . . . . . . . . . 11
⊢ (1 / 2)
< 1 | 
| 30 | 28, 29 | eqbrtri 5163 | . . . . . . . . . 10
⊢
(abs‘(1 / 2)) < 1 | 
| 31 | 30 | a1i 11 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (abs‘(1 / 2))
< 1) | 
| 32 | 24, 31 | expcnv 15901 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛)) ⇝
0) | 
| 33 | 14 | recnd 11290 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℂ) | 
| 34 |  | nnex 12273 | . . . . . . . . . 10
⊢ ℕ
∈ V | 
| 35 | 34 | mptex 7244 | . . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛))) ∈ V | 
| 36 | 35 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛))) ∈ V) | 
| 37 |  | nnnn0 12535 | . . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ0) | 
| 38 | 37 | adantl 481 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0) | 
| 39 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑗 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑗)) | 
| 40 |  | eqid 2736 | . . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
↦ ((1 / 2)↑𝑛)) =
(𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛)) | 
| 41 |  | ovex 7465 | . . . . . . . . . . 11
⊢ ((1 /
2)↑𝑗) ∈
V | 
| 42 | 39, 40, 41 | fvmpt 7015 | . . . . . . . . . 10
⊢ (𝑗 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗)) | 
| 43 | 38, 42 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗)) | 
| 44 |  | expcl 14121 | . . . . . . . . . 10
⊢ (((1 / 2)
∈ ℂ ∧ 𝑗
∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ) | 
| 45 | 23, 38, 44 | sylancr 587 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) ∈
ℂ) | 
| 46 | 43, 45 | eqeltrd 2840 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑗) ∈
ℂ) | 
| 47 | 39 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑗 → ((𝐹‘𝑥) − ((1 / 2)↑𝑛)) = ((𝐹‘𝑥) − ((1 / 2)↑𝑗))) | 
| 48 |  | eqid 2736 | . . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛))) | 
| 49 |  | ovex 7465 | . . . . . . . . . . 11
⊢ ((𝐹‘𝑥) − ((1 / 2)↑𝑗)) ∈ V | 
| 50 | 47, 48, 49 | fvmpt 7015 | . . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹‘𝑥) − ((1 / 2)↑𝑗))) | 
| 51 | 50 | adantl 481 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹‘𝑥) − ((1 / 2)↑𝑗))) | 
| 52 | 43 | oveq2d 7448 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑗)) = ((𝐹‘𝑥) − ((1 / 2)↑𝑗))) | 
| 53 | 51, 52 | eqtr4d 2779 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹‘𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑗))) | 
| 54 | 21, 22, 32, 33, 36, 46, 53 | climsubc2 15676 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛))) ⇝ ((𝐹‘𝑥) − 0)) | 
| 55 | 33 | subid1d 11610 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) − 0) = (𝐹‘𝑥)) | 
| 56 | 54, 55 | breqtrd 5168 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹‘𝑥)) | 
| 57 | 56 | adantr 480 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹‘𝑥)) | 
| 58 | 34 | mptex 7244 | . . . . . 6
⊢ (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥)) ∈ V | 
| 59 | 58 | a1i 11 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥)) ∈ V) | 
| 60 |  | simprl 770 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) → 𝑘 ∈ ℕ) | 
| 61 |  | eluznn 12961 | . . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑘)) → 𝑗 ∈ ℕ) | 
| 62 | 60, 61 | sylan 580 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ ℕ) | 
| 63 | 62, 50 | syl 17 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹‘𝑥) − ((1 / 2)↑𝑗))) | 
| 64 | 14 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑥) ∈ ℝ) | 
| 65 | 62, 37 | syl 17 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ ℕ0) | 
| 66 |  | reexpcl 14120 | . . . . . . . 8
⊢ (((1 / 2)
∈ ℝ ∧ 𝑗
∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℝ) | 
| 67 | 25, 65, 66 | sylancr 587 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((1 / 2)↑𝑗) ∈
ℝ) | 
| 68 | 64, 67 | resubcld 11692 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐹‘𝑥) − ((1 / 2)↑𝑗)) ∈ ℝ) | 
| 69 | 63, 68 | eqeltrd 2840 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ∈ ℝ) | 
| 70 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑛 = 𝑗 → (𝐺‘𝑛) = (𝐺‘𝑗)) | 
| 71 | 70 | fveq1d 6907 | . . . . . . . 8
⊢ (𝑛 = 𝑗 → ((𝐺‘𝑛)‘𝑥) = ((𝐺‘𝑗)‘𝑥)) | 
| 72 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥)) | 
| 73 |  | fvex 6918 | . . . . . . . 8
⊢ ((𝐺‘𝑗)‘𝑥) ∈ V | 
| 74 | 71, 72, 73 | fvmpt 7015 | . . . . . . 7
⊢ (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥))‘𝑗) = ((𝐺‘𝑗)‘𝑥)) | 
| 75 | 62, 74 | syl 17 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥))‘𝑗) = ((𝐺‘𝑗)‘𝑥)) | 
| 76 | 5 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝐺:ℕ⟶dom
∫1) | 
| 77 | 76, 62 | ffvelcdmd 7104 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐺‘𝑗) ∈ dom
∫1) | 
| 78 |  | i1ff 25712 | . . . . . . . 8
⊢ ((𝐺‘𝑗) ∈ dom ∫1 → (𝐺‘𝑗):ℝ⟶ℝ) | 
| 79 | 77, 78 | syl 17 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐺‘𝑗):ℝ⟶ℝ) | 
| 80 | 8 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑥 ∈ ℝ) | 
| 81 | 79, 80 | ffvelcdmd 7104 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐺‘𝑗)‘𝑥) ∈ ℝ) | 
| 82 | 75, 81 | eqeltrd 2840 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥))‘𝑗) ∈ ℝ) | 
| 83 | 33 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑥) ∈ ℂ) | 
| 84 |  | 2nn 12340 | . . . . . . . . . . . . . 14
⊢ 2 ∈
ℕ | 
| 85 |  | nnexpcl 14116 | . . . . . . . . . . . . . 14
⊢ ((2
∈ ℕ ∧ 𝑗
∈ ℕ0) → (2↑𝑗) ∈ ℕ) | 
| 86 | 84, 65, 85 | sylancr 587 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (2↑𝑗) ∈
ℕ) | 
| 87 | 86 | nnred 12282 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (2↑𝑗) ∈
ℝ) | 
| 88 | 87 | recnd 11290 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (2↑𝑗) ∈
ℂ) | 
| 89 | 86 | nnne0d 12317 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (2↑𝑗) ≠ 0) | 
| 90 | 83, 88, 89 | divcan4d 12050 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (((𝐹‘𝑥) · (2↑𝑗)) / (2↑𝑗)) = (𝐹‘𝑥)) | 
| 91 | 90 | eqcomd 2742 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑥) = (((𝐹‘𝑥) · (2↑𝑗)) / (2↑𝑗))) | 
| 92 |  | 2cnd 12345 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 2 ∈
ℂ) | 
| 93 |  | 2ne0 12371 | . . . . . . . . . . 11
⊢ 2 ≠
0 | 
| 94 | 93 | a1i 11 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 2 ≠
0) | 
| 95 |  | eluzelz 12889 | . . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑘) → 𝑗 ∈ ℤ) | 
| 96 | 95 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ ℤ) | 
| 97 | 92, 94, 96 | exprecd 14195 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗))) | 
| 98 | 91, 97 | oveq12d 7450 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐹‘𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹‘𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗)))) | 
| 99 | 64, 87 | remulcld 11292 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐹‘𝑥) · (2↑𝑗)) ∈ ℝ) | 
| 100 | 99 | recnd 11290 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐹‘𝑥) · (2↑𝑗)) ∈ ℂ) | 
| 101 |  | 1cnd 11257 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 1 ∈
ℂ) | 
| 102 | 100, 101,
88, 89 | divsubdird 12083 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((((𝐹‘𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) = ((((𝐹‘𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗)))) | 
| 103 | 98, 102 | eqtr4d 2779 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐹‘𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹‘𝑥) · (2↑𝑗)) − 1) / (2↑𝑗))) | 
| 104 |  | fllep1 13842 | . . . . . . . . . 10
⊢ (((𝐹‘𝑥) · (2↑𝑗)) ∈ ℝ → ((𝐹‘𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) + 1)) | 
| 105 | 99, 104 | syl 17 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐹‘𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) + 1)) | 
| 106 |  | 1red 11263 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 1 ∈
ℝ) | 
| 107 |  | reflcl 13837 | . . . . . . . . . . 11
⊢ (((𝐹‘𝑥) · (2↑𝑗)) ∈ ℝ →
(⌊‘((𝐹‘𝑥) · (2↑𝑗))) ∈ ℝ) | 
| 108 | 99, 107 | syl 17 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (⌊‘((𝐹‘𝑥) · (2↑𝑗))) ∈ ℝ) | 
| 109 | 99, 106, 108 | lesubaddd 11861 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((((𝐹‘𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑗))) ↔ ((𝐹‘𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) + 1))) | 
| 110 | 105, 109 | mpbird 257 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (((𝐹‘𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑗)))) | 
| 111 |  | peano2rem 11577 | . . . . . . . . . 10
⊢ (((𝐹‘𝑥) · (2↑𝑗)) ∈ ℝ → (((𝐹‘𝑥) · (2↑𝑗)) − 1) ∈
ℝ) | 
| 112 | 99, 111 | syl 17 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (((𝐹‘𝑥) · (2↑𝑗)) − 1) ∈
ℝ) | 
| 113 | 86 | nngt0d 12316 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 0 < (2↑𝑗)) | 
| 114 |  | lediv1 12134 | . . . . . . . . 9
⊢
(((((𝐹‘𝑥) · (2↑𝑗)) − 1) ∈ ℝ
∧ (⌊‘((𝐹‘𝑥) · (2↑𝑗))) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 <
(2↑𝑗))) →
((((𝐹‘𝑥) · (2↑𝑗)) − 1) ≤
(⌊‘((𝐹‘𝑥) · (2↑𝑗))) ↔ ((((𝐹‘𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗)))) | 
| 115 | 112, 108,
87, 113, 114 | syl112anc 1375 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((((𝐹‘𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑗))) ↔ ((((𝐹‘𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗)))) | 
| 116 | 110, 115 | mpbid 232 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((((𝐹‘𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗))) | 
| 117 | 103, 116 | eqbrtrd 5164 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐹‘𝑥) − ((1 / 2)↑𝑗)) ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗))) | 
| 118 | 1, 2, 3, 4 | mbfi1fseqlem2 25752 | . . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (𝐺‘𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))) | 
| 119 | 62, 118 | syl 17 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐺‘𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))) | 
| 120 | 119 | fveq1d 6907 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐺‘𝑗)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥)) | 
| 121 |  | ovex 7465 | . . . . . . . . . . 11
⊢ (𝑗𝐽𝑥) ∈ V | 
| 122 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑗 ∈ V | 
| 123 | 121, 122 | ifex 4575 | . . . . . . . . . 10
⊢ if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) ∈ V | 
| 124 |  | c0ex 11256 | . . . . . . . . . 10
⊢ 0 ∈
V | 
| 125 | 123, 124 | ifex 4575 | . . . . . . . . 9
⊢ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V | 
| 126 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)) | 
| 127 | 126 | fvmpt2 7026 | . . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)) | 
| 128 | 80, 125, 127 | sylancl 586 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)) | 
| 129 | 75, 120, 128 | 3eqtrd 2780 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥))‘𝑗) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)) | 
| 130 | 10 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (abs‘𝑥) ∈
ℝ) | 
| 131 | 15 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((abs‘𝑥) + (𝐹‘𝑥)) ∈ ℝ) | 
| 132 | 62 | nnred 12282 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ ℝ) | 
| 133 | 11 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑥) ∈ (0[,)+∞)) | 
| 134 | 133, 12 | sylib 218 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | 
| 135 | 134 | simprd 495 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 0 ≤ (𝐹‘𝑥)) | 
| 136 | 130, 64 | addge01d 11852 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (0 ≤ (𝐹‘𝑥) ↔ (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹‘𝑥)))) | 
| 137 | 135, 136 | mpbid 232 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹‘𝑥))) | 
| 138 | 60 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑘 ∈ ℕ) | 
| 139 | 138 | nnred 12282 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑘 ∈ ℝ) | 
| 140 |  | simplrr 777 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘) | 
| 141 | 131, 139,
140 | ltled 11410 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((abs‘𝑥) + (𝐹‘𝑥)) ≤ 𝑘) | 
| 142 |  | eluzle 12892 | . . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘𝑘) → 𝑘 ≤ 𝑗) | 
| 143 | 142 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑘 ≤ 𝑗) | 
| 144 | 131, 139,
132, 141, 143 | letrd 11419 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((abs‘𝑥) + (𝐹‘𝑥)) ≤ 𝑗) | 
| 145 | 130, 131,
132, 137, 144 | letrd 11419 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (abs‘𝑥) ≤ 𝑗) | 
| 146 | 80, 132 | absled 15470 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((abs‘𝑥) ≤ 𝑗 ↔ (-𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗))) | 
| 147 | 145, 146 | mpbid 232 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (-𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗)) | 
| 148 | 147 | simpld 494 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → -𝑗 ≤ 𝑥) | 
| 149 | 147 | simprd 495 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑥 ≤ 𝑗) | 
| 150 | 132 | renegcld 11691 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → -𝑗 ∈ ℝ) | 
| 151 |  | elicc2 13453 | . . . . . . . . . 10
⊢ ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗))) | 
| 152 | 150, 132,
151 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗 ≤ 𝑥 ∧ 𝑥 ≤ 𝑗))) | 
| 153 | 80, 148, 149, 152 | mpbir3and 1342 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑥 ∈ (-𝑗[,]𝑗)) | 
| 154 | 153 | iftrued 4532 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) = if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗)) | 
| 155 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ ((𝑚 = 𝑗 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) | 
| 156 | 155 | fveq2d 6909 | . . . . . . . . . . . . . . 15
⊢ ((𝑚 = 𝑗 ∧ 𝑦 = 𝑥) → (𝐹‘𝑦) = (𝐹‘𝑥)) | 
| 157 |  | simpl 482 | . . . . . . . . . . . . . . . 16
⊢ ((𝑚 = 𝑗 ∧ 𝑦 = 𝑥) → 𝑚 = 𝑗) | 
| 158 | 157 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ ((𝑚 = 𝑗 ∧ 𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑗)) | 
| 159 | 156, 158 | oveq12d 7450 | . . . . . . . . . . . . . 14
⊢ ((𝑚 = 𝑗 ∧ 𝑦 = 𝑥) → ((𝐹‘𝑦) · (2↑𝑚)) = ((𝐹‘𝑥) · (2↑𝑗))) | 
| 160 | 159 | fveq2d 6909 | . . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑗 ∧ 𝑦 = 𝑥) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) = (⌊‘((𝐹‘𝑥) · (2↑𝑗)))) | 
| 161 | 160, 158 | oveq12d 7450 | . . . . . . . . . . . 12
⊢ ((𝑚 = 𝑗 ∧ 𝑦 = 𝑥) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗))) | 
| 162 |  | ovex 7465 | . . . . . . . . . . . 12
⊢
((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ V | 
| 163 | 161, 3, 162 | ovmpoa 7589 | . . . . . . . . . . 11
⊢ ((𝑗 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑗𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗))) | 
| 164 | 62, 80, 163 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝑗𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗))) | 
| 165 | 108, 86 | nndivred 12321 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) →
((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ ℝ) | 
| 166 |  | flle 13840 | . . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) · (2↑𝑗)) ∈ ℝ →
(⌊‘((𝐹‘𝑥) · (2↑𝑗))) ≤ ((𝐹‘𝑥) · (2↑𝑗))) | 
| 167 | 99, 166 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (⌊‘((𝐹‘𝑥) · (2↑𝑗))) ≤ ((𝐹‘𝑥) · (2↑𝑗))) | 
| 168 |  | ledivmul2 12148 | . . . . . . . . . . . . 13
⊢
(((⌊‘((𝐹‘𝑥) · (2↑𝑗))) ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 <
(2↑𝑗))) →
(((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹‘𝑥) ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑗))) ≤ ((𝐹‘𝑥) · (2↑𝑗)))) | 
| 169 | 108, 64, 87, 113, 168 | syl112anc 1375 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) →
(((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹‘𝑥) ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑗))) ≤ ((𝐹‘𝑥) · (2↑𝑗)))) | 
| 170 | 167, 169 | mpbird 257 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) →
((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹‘𝑥)) | 
| 171 | 9 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑥 ∈ ℂ) | 
| 172 | 171 | absge0d 15484 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 0 ≤
(abs‘𝑥)) | 
| 173 | 64, 130 | addge02d 11853 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (0 ≤
(abs‘𝑥) ↔ (𝐹‘𝑥) ≤ ((abs‘𝑥) + (𝐹‘𝑥)))) | 
| 174 | 172, 173 | mpbid 232 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑥) ≤ ((abs‘𝑥) + (𝐹‘𝑥))) | 
| 175 | 64, 131, 132, 174, 144 | letrd 11419 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑥) ≤ 𝑗) | 
| 176 | 165, 64, 132, 170, 175 | letrd 11419 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) →
((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ 𝑗) | 
| 177 | 164, 176 | eqbrtrd 5164 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝑗𝐽𝑥) ≤ 𝑗) | 
| 178 | 177 | iftrued 4532 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = (𝑗𝐽𝑥)) | 
| 179 | 178, 164 | eqtrd 2776 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗))) | 
| 180 | 129, 154,
179 | 3eqtrd 2780 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥))‘𝑗) = ((⌊‘((𝐹‘𝑥) · (2↑𝑗))) / (2↑𝑗))) | 
| 181 | 117, 63, 180 | 3brtr4d 5174 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥))‘𝑗)) | 
| 182 | 180, 170 | eqbrtrd 5164 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥))‘𝑗) ≤ (𝐹‘𝑥)) | 
| 183 | 18, 20, 57, 59, 69, 82, 181, 182 | climsqz 15678 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹‘𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) | 
| 184 | 17, 183 | rexlimddv 3160 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) | 
| 185 | 184 | ralrimiva 3145 | . 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) | 
| 186 | 34 | mptex 7244 | . . . 4
⊢ (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ∈ V | 
| 187 | 4, 186 | eqeltri 2836 | . . 3
⊢ 𝐺 ∈ V | 
| 188 |  | feq1 6715 | . . . 4
⊢ (𝑔 = 𝐺 → (𝑔:ℕ⟶dom ∫1 ↔
𝐺:ℕ⟶dom
∫1)) | 
| 189 |  | fveq1 6904 | . . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔‘𝑛) = (𝐺‘𝑛)) | 
| 190 | 189 | breq2d 5154 | . . . . . 6
⊢ (𝑔 = 𝐺 → (0𝑝
∘r ≤ (𝑔‘𝑛) ↔ 0𝑝
∘r ≤ (𝐺‘𝑛))) | 
| 191 |  | fveq1 6904 | . . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1))) | 
| 192 | 189, 191 | breq12d 5155 | . . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1)) ↔ (𝐺‘𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))) | 
| 193 | 190, 192 | anbi12d 632 | . . . . 5
⊢ (𝑔 = 𝐺 → ((0𝑝
∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ (0𝑝
∘r ≤ (𝐺‘𝑛) ∧ (𝐺‘𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))) | 
| 194 | 193 | ralbidv 3177 | . . . 4
⊢ (𝑔 = 𝐺 → (∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝐺‘𝑛) ∧ (𝐺‘𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))) | 
| 195 | 189 | fveq1d 6907 | . . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑔‘𝑛)‘𝑥) = ((𝐺‘𝑛)‘𝑥)) | 
| 196 | 195 | mpteq2dv 5243 | . . . . . 6
⊢ (𝑔 = 𝐺 → (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥))) | 
| 197 | 196 | breq1d 5152 | . . . . 5
⊢ (𝑔 = 𝐺 → ((𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | 
| 198 | 197 | ralbidv 3177 | . . . 4
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | 
| 199 | 188, 194,
198 | 3anbi123d 1437 | . . 3
⊢ (𝑔 = 𝐺 → ((𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ↔ (𝐺:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝐺‘𝑛) ∧ (𝐺‘𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) | 
| 200 | 187, 199 | spcev 3605 | . 2
⊢ ((𝐺:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝐺‘𝑛) ∧ (𝐺‘𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | 
| 201 | 5, 7, 185, 200 | syl3anc 1372 | 1
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |