MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem1 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem1 24471
Description: Lemma for mbfi1fseq 24477. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
Assertion
Ref Expression
mbfi1fseqlem1 (𝜑𝐽:(ℕ × ℝ)⟶(0[,)+∞))
Distinct variable groups:   𝑦,𝑚,𝐹   𝑚,𝐽   𝜑,𝑚,𝑦
Allowed substitution hint:   𝐽(𝑦)

Proof of Theorem mbfi1fseqlem1
StepHypRef Expression
1 mbfi1fseq.2 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 simpr 488 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3 ffvelrn 6862 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
41, 2, 3syl2an 599 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
5 elrege0 12931 . . . . . . . . 9 ((𝐹𝑦) ∈ (0[,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)))
64, 5sylib 221 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)))
76simpld 498 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
8 2nn 11792 . . . . . . . . . 10 2 ∈ ℕ
9 nnnn0 11986 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
10 nnexpcl 13537 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
118, 9, 10sylancr 590 . . . . . . . . 9 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1211ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
1312nnred 11734 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
147, 13remulcld 10752 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
15 reflcl 13260 . . . . . 6 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1614, 15syl 17 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1716, 12nndivred 11773 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
1812nnnn0d 12039 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ0)
1918nn0ge0d 12042 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (2↑𝑚))
20 mulge0 11239 . . . . . . . 8 ((((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 ≤ (2↑𝑚))) → 0 ≤ ((𝐹𝑦) · (2↑𝑚)))
216, 13, 19, 20syl12anc 836 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((𝐹𝑦) · (2↑𝑚)))
22 flge0nn0 13284 . . . . . . 7 ((((𝐹𝑦) · (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑦) · (2↑𝑚))) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℕ0)
2314, 21, 22syl2anc 587 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℕ0)
2423nn0ge0d 12042 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (⌊‘((𝐹𝑦) · (2↑𝑚))))
2512nngt0d 11768 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 < (2↑𝑚))
26 divge0 11590 . . . . 5 ((((⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ ∧ 0 ≤ (⌊‘((𝐹𝑦) · (2↑𝑚)))) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 < (2↑𝑚))) → 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
2716, 24, 13, 25, 26syl22anc 838 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
28 elrege0 12931 . . . 4 (((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ (((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚))))
2917, 27, 28sylanbrc 586 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞))
3029ralrimivva 3104 . 2 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞))
31 mbfi1fseq.3 . . 3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
3231fmpo 7794 . 2 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ 𝐽:(ℕ × ℝ)⟶(0[,)+∞))
3330, 32sylib 221 1 (𝜑𝐽:(ℕ × ℝ)⟶(0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wral 3054   class class class wbr 5031   × cxp 5524  wf 6336  cfv 6340  (class class class)co 7173  cmpo 7175  cr 10617  0cc0 10618   · cmul 10623  +∞cpnf 10753   < clt 10756  cle 10757   / cdiv 11378  cn 11719  2c2 11774  0cn0 11979  [,)cico 12826  cfl 13254  cexp 13524  MblFncmbf 24369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-sup 8982  df-inf 8983  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-n0 11980  df-z 12066  df-uz 12328  df-ico 12830  df-fl 13256  df-seq 13464  df-exp 13525
This theorem is referenced by:  mbfi1fseqlem5  24475
  Copyright terms: Public domain W3C validator