| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfi1fseqlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for mbfi1fseq 25652. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| Ref | Expression |
|---|---|
| mbfi1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| mbfi1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| mbfi1fseq.3 | ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
| Ref | Expression |
|---|---|
| mbfi1fseqlem1 | ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | |
| 2 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
| 3 | ffvelcdm 7022 | . . . . . . . . . 10 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (0[,)+∞)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
| 5 | elrege0 13358 | . . . . . . . . 9 ⊢ ((𝐹‘𝑦) ∈ (0[,)+∞) ↔ ((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦))) | |
| 6 | 4, 5 | sylib 218 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦))) |
| 7 | 6 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) |
| 8 | 2nn 12207 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
| 9 | nnnn0 12397 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0) | |
| 10 | nnexpcl 13985 | . . . . . . . . . 10 ⊢ ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ) |
| 12 | 11 | ad2antrl 728 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ) |
| 13 | 12 | nnred 12149 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ) |
| 14 | 7, 13 | remulcld 11151 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) |
| 15 | reflcl 13704 | . . . . . 6 ⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
| 17 | 16, 12 | nndivred 12188 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
| 18 | 12 | nnnn0d 12451 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ0) |
| 19 | 18 | nn0ge0d 12454 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (2↑𝑚)) |
| 20 | mulge0 11644 | . . . . . . . 8 ⊢ ((((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦)) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 ≤ (2↑𝑚))) → 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) | |
| 21 | 6, 13, 19, 20 | syl12anc 836 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) |
| 22 | flge0nn0 13728 | . . . . . . 7 ⊢ ((((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℕ0) | |
| 23 | 14, 21, 22 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℕ0) |
| 24 | 23 | nn0ge0d 12454 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (⌊‘((𝐹‘𝑦) · (2↑𝑚)))) |
| 25 | 12 | nngt0d 12183 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 < (2↑𝑚)) |
| 26 | divge0 12000 | . . . . 5 ⊢ ((((⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ ∧ 0 ≤ (⌊‘((𝐹‘𝑦) · (2↑𝑚)))) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 < (2↑𝑚))) → 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | |
| 27 | 16, 24, 13, 25, 26 | syl22anc 838 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
| 28 | elrege0 13358 | . . . 4 ⊢ (((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ (((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)))) | |
| 29 | 17, 27, 28 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞)) |
| 30 | 29 | ralrimivva 3176 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞)) |
| 31 | mbfi1fseq.3 | . . 3 ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | |
| 32 | 31 | fmpo 8008 | . 2 ⊢ (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
| 33 | 30, 32 | sylib 218 | 1 ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 class class class wbr 5095 × cxp 5619 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 ℝcr 11014 0cc0 11015 · cmul 11020 +∞cpnf 11152 < clt 11155 ≤ cle 11156 / cdiv 11783 ℕcn 12134 2c2 12189 ℕ0cn0 12390 [,)cico 13251 ⌊cfl 13698 ↑cexp 13972 MblFncmbf 25545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-n0 12391 df-z 12478 df-uz 12741 df-ico 13255 df-fl 13700 df-seq 13913 df-exp 13973 |
| This theorem is referenced by: mbfi1fseqlem5 25650 |
| Copyright terms: Public domain | W3C validator |