Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfi1fseqlem1 | Structured version Visualization version GIF version |
Description: Lemma for mbfi1fseq 24886. (Contributed by Mario Carneiro, 16-Aug-2014.) |
Ref | Expression |
---|---|
mbfi1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
mbfi1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
mbfi1fseq.3 | ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
Ref | Expression |
---|---|
mbfi1fseqlem1 | ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfi1fseq.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | |
2 | simpr 485 | . . . . . . . . . 10 ⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
3 | ffvelrn 6959 | . . . . . . . . . 10 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (0[,)+∞)) | |
4 | 1, 2, 3 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
5 | elrege0 13186 | . . . . . . . . 9 ⊢ ((𝐹‘𝑦) ∈ (0[,)+∞) ↔ ((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦))) | |
6 | 4, 5 | sylib 217 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦))) |
7 | 6 | simpld 495 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) |
8 | 2nn 12046 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
9 | nnnn0 12240 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0) | |
10 | nnexpcl 13795 | . . . . . . . . . 10 ⊢ ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ) | |
11 | 8, 9, 10 | sylancr 587 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ) |
12 | 11 | ad2antrl 725 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ) |
13 | 12 | nnred 11988 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ) |
14 | 7, 13 | remulcld 11005 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) |
15 | reflcl 13516 | . . . . . 6 ⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
17 | 16, 12 | nndivred 12027 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
18 | 12 | nnnn0d 12293 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ0) |
19 | 18 | nn0ge0d 12296 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (2↑𝑚)) |
20 | mulge0 11493 | . . . . . . . 8 ⊢ ((((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦)) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 ≤ (2↑𝑚))) → 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) | |
21 | 6, 13, 19, 20 | syl12anc 834 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) |
22 | flge0nn0 13540 | . . . . . . 7 ⊢ ((((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℕ0) | |
23 | 14, 21, 22 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℕ0) |
24 | 23 | nn0ge0d 12296 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (⌊‘((𝐹‘𝑦) · (2↑𝑚)))) |
25 | 12 | nngt0d 12022 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 < (2↑𝑚)) |
26 | divge0 11844 | . . . . 5 ⊢ ((((⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ ∧ 0 ≤ (⌊‘((𝐹‘𝑦) · (2↑𝑚)))) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 < (2↑𝑚))) → 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | |
27 | 16, 24, 13, 25, 26 | syl22anc 836 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
28 | elrege0 13186 | . . . 4 ⊢ (((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ (((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)))) | |
29 | 17, 27, 28 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞)) |
30 | 29 | ralrimivva 3123 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞)) |
31 | mbfi1fseq.3 | . . 3 ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | |
32 | 31 | fmpo 7908 | . 2 ⊢ (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
33 | 30, 32 | sylib 217 | 1 ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ℝcr 10870 0cc0 10871 · cmul 10876 +∞cpnf 11006 < clt 11009 ≤ cle 11010 / cdiv 11632 ℕcn 11973 2c2 12028 ℕ0cn0 12233 [,)cico 13081 ⌊cfl 13510 ↑cexp 13782 MblFncmbf 24778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-ico 13085 df-fl 13512 df-seq 13722 df-exp 13783 |
This theorem is referenced by: mbfi1fseqlem5 24884 |
Copyright terms: Public domain | W3C validator |