MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem1 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem1 25632
Description: Lemma for mbfi1fseq 25638. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
Assertion
Ref Expression
mbfi1fseqlem1 (𝜑𝐽:(ℕ × ℝ)⟶(0[,)+∞))
Distinct variable groups:   𝑦,𝑚,𝐹   𝑚,𝐽   𝜑,𝑚,𝑦
Allowed substitution hint:   𝐽(𝑦)

Proof of Theorem mbfi1fseqlem1
StepHypRef Expression
1 mbfi1fseq.2 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 simpr 484 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3 ffvelcdm 7019 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
41, 2, 3syl2an 596 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
5 elrege0 13375 . . . . . . . . 9 ((𝐹𝑦) ∈ (0[,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)))
64, 5sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)))
76simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
8 2nn 12219 . . . . . . . . . 10 2 ∈ ℕ
9 nnnn0 12409 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
10 nnexpcl 13999 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
118, 9, 10sylancr 587 . . . . . . . . 9 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1211ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
1312nnred 12161 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
147, 13remulcld 11164 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
15 reflcl 13718 . . . . . 6 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1614, 15syl 17 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1716, 12nndivred 12200 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
1812nnnn0d 12463 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ0)
1918nn0ge0d 12466 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (2↑𝑚))
20 mulge0 11656 . . . . . . . 8 ((((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 ≤ (2↑𝑚))) → 0 ≤ ((𝐹𝑦) · (2↑𝑚)))
216, 13, 19, 20syl12anc 836 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((𝐹𝑦) · (2↑𝑚)))
22 flge0nn0 13742 . . . . . . 7 ((((𝐹𝑦) · (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑦) · (2↑𝑚))) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℕ0)
2314, 21, 22syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℕ0)
2423nn0ge0d 12466 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (⌊‘((𝐹𝑦) · (2↑𝑚))))
2512nngt0d 12195 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 < (2↑𝑚))
26 divge0 12012 . . . . 5 ((((⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ ∧ 0 ≤ (⌊‘((𝐹𝑦) · (2↑𝑚)))) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 < (2↑𝑚))) → 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
2716, 24, 13, 25, 26syl22anc 838 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
28 elrege0 13375 . . . 4 (((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ (((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚))))
2917, 27, 28sylanbrc 583 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞))
3029ralrimivva 3172 . 2 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞))
31 mbfi1fseq.3 . . 3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
3231fmpo 8010 . 2 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ 𝐽:(ℕ × ℝ)⟶(0[,)+∞))
3330, 32sylib 218 1 (𝜑𝐽:(ℕ × ℝ)⟶(0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095   × cxp 5621  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  cr 11027  0cc0 11028   · cmul 11033  +∞cpnf 11165   < clt 11168  cle 11169   / cdiv 11795  cn 12146  2c2 12201  0cn0 12402  [,)cico 13268  cfl 13712  cexp 13986  MblFncmbf 25531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-ico 13272  df-fl 13714  df-seq 13927  df-exp 13987
This theorem is referenced by:  mbfi1fseqlem5  25636
  Copyright terms: Public domain W3C validator