MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem1 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem1 25646
Description: Lemma for mbfi1fseq 25652. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
Assertion
Ref Expression
mbfi1fseqlem1 (𝜑𝐽:(ℕ × ℝ)⟶(0[,)+∞))
Distinct variable groups:   𝑦,𝑚,𝐹   𝑚,𝐽   𝜑,𝑚,𝑦
Allowed substitution hint:   𝐽(𝑦)

Proof of Theorem mbfi1fseqlem1
StepHypRef Expression
1 mbfi1fseq.2 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 simpr 484 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3 ffvelcdm 7022 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
41, 2, 3syl2an 596 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
5 elrege0 13358 . . . . . . . . 9 ((𝐹𝑦) ∈ (0[,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)))
64, 5sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)))
76simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
8 2nn 12207 . . . . . . . . . 10 2 ∈ ℕ
9 nnnn0 12397 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
10 nnexpcl 13985 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
118, 9, 10sylancr 587 . . . . . . . . 9 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1211ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
1312nnred 12149 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
147, 13remulcld 11151 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
15 reflcl 13704 . . . . . 6 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1614, 15syl 17 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1716, 12nndivred 12188 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
1812nnnn0d 12451 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ0)
1918nn0ge0d 12454 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (2↑𝑚))
20 mulge0 11644 . . . . . . . 8 ((((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 ≤ (2↑𝑚))) → 0 ≤ ((𝐹𝑦) · (2↑𝑚)))
216, 13, 19, 20syl12anc 836 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((𝐹𝑦) · (2↑𝑚)))
22 flge0nn0 13728 . . . . . . 7 ((((𝐹𝑦) · (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑦) · (2↑𝑚))) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℕ0)
2314, 21, 22syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℕ0)
2423nn0ge0d 12454 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (⌊‘((𝐹𝑦) · (2↑𝑚))))
2512nngt0d 12183 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 < (2↑𝑚))
26 divge0 12000 . . . . 5 ((((⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ ∧ 0 ≤ (⌊‘((𝐹𝑦) · (2↑𝑚)))) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 < (2↑𝑚))) → 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
2716, 24, 13, 25, 26syl22anc 838 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
28 elrege0 13358 . . . 4 (((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ (((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚))))
2917, 27, 28sylanbrc 583 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞))
3029ralrimivva 3176 . 2 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞))
31 mbfi1fseq.3 . . 3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
3231fmpo 8008 . 2 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ 𝐽:(ℕ × ℝ)⟶(0[,)+∞))
3330, 32sylib 218 1 (𝜑𝐽:(ℕ × ℝ)⟶(0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5095   × cxp 5619  wf 6484  cfv 6488  (class class class)co 7354  cmpo 7356  cr 11014  0cc0 11015   · cmul 11020  +∞cpnf 11152   < clt 11155  cle 11156   / cdiv 11783  cn 12134  2c2 12189  0cn0 12390  [,)cico 13251  cfl 13698  cexp 13972  MblFncmbf 25545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-n0 12391  df-z 12478  df-uz 12741  df-ico 13255  df-fl 13700  df-seq 13913  df-exp 13973
This theorem is referenced by:  mbfi1fseqlem5  25650
  Copyright terms: Public domain W3C validator