![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfi1fseqlem1 | Structured version Visualization version GIF version |
Description: Lemma for mbfi1fseq 25645. (Contributed by Mario Carneiro, 16-Aug-2014.) |
Ref | Expression |
---|---|
mbfi1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
mbfi1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
mbfi1fseq.3 | ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
Ref | Expression |
---|---|
mbfi1fseqlem1 | ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfi1fseq.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | |
2 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
3 | ffvelcdm 7086 | . . . . . . . . . 10 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (0[,)+∞)) | |
4 | 1, 2, 3 | syl2an 595 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
5 | elrege0 13458 | . . . . . . . . 9 ⊢ ((𝐹‘𝑦) ∈ (0[,)+∞) ↔ ((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦))) | |
6 | 4, 5 | sylib 217 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦))) |
7 | 6 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) |
8 | 2nn 12310 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
9 | nnnn0 12504 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0) | |
10 | nnexpcl 14066 | . . . . . . . . . 10 ⊢ ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ) | |
11 | 8, 9, 10 | sylancr 586 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ) |
12 | 11 | ad2antrl 727 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ) |
13 | 12 | nnred 12252 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ) |
14 | 7, 13 | remulcld 11269 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) |
15 | reflcl 13788 | . . . . . 6 ⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
17 | 16, 12 | nndivred 12291 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
18 | 12 | nnnn0d 12557 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ0) |
19 | 18 | nn0ge0d 12560 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (2↑𝑚)) |
20 | mulge0 11757 | . . . . . . . 8 ⊢ ((((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦)) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 ≤ (2↑𝑚))) → 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) | |
21 | 6, 13, 19, 20 | syl12anc 836 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) |
22 | flge0nn0 13812 | . . . . . . 7 ⊢ ((((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℕ0) | |
23 | 14, 21, 22 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℕ0) |
24 | 23 | nn0ge0d 12560 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (⌊‘((𝐹‘𝑦) · (2↑𝑚)))) |
25 | 12 | nngt0d 12286 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 < (2↑𝑚)) |
26 | divge0 12108 | . . . . 5 ⊢ ((((⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ ∧ 0 ≤ (⌊‘((𝐹‘𝑦) · (2↑𝑚)))) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 < (2↑𝑚))) → 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | |
27 | 16, 24, 13, 25, 26 | syl22anc 838 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
28 | elrege0 13458 | . . . 4 ⊢ (((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ (((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)))) | |
29 | 17, 27, 28 | sylanbrc 582 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞)) |
30 | 29 | ralrimivva 3196 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞)) |
31 | mbfi1fseq.3 | . . 3 ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | |
32 | 31 | fmpo 8067 | . 2 ⊢ (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
33 | 30, 32 | sylib 217 | 1 ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 class class class wbr 5143 × cxp 5671 ⟶wf 6539 ‘cfv 6543 (class class class)co 7415 ∈ cmpo 7417 ℝcr 11132 0cc0 11133 · cmul 11138 +∞cpnf 11270 < clt 11273 ≤ cle 11274 / cdiv 11896 ℕcn 12237 2c2 12292 ℕ0cn0 12497 [,)cico 13353 ⌊cfl 13782 ↑cexp 14053 MblFncmbf 25537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-sup 9460 df-inf 9461 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-n0 12498 df-z 12584 df-uz 12848 df-ico 13357 df-fl 13784 df-seq 13994 df-exp 14054 |
This theorem is referenced by: mbfi1fseqlem5 25643 |
Copyright terms: Public domain | W3C validator |