| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfi1fseqlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for mbfi1fseq 25622. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| Ref | Expression |
|---|---|
| mbfi1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| mbfi1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| mbfi1fseq.3 | ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
| Ref | Expression |
|---|---|
| mbfi1fseqlem1 | ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | |
| 2 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
| 3 | ffvelcdm 7053 | . . . . . . . . . 10 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (0[,)+∞)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
| 5 | elrege0 13415 | . . . . . . . . 9 ⊢ ((𝐹‘𝑦) ∈ (0[,)+∞) ↔ ((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦))) | |
| 6 | 4, 5 | sylib 218 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦))) |
| 7 | 6 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) |
| 8 | 2nn 12259 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
| 9 | nnnn0 12449 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0) | |
| 10 | nnexpcl 14039 | . . . . . . . . . 10 ⊢ ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ) |
| 12 | 11 | ad2antrl 728 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ) |
| 13 | 12 | nnred 12201 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ) |
| 14 | 7, 13 | remulcld 11204 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) |
| 15 | reflcl 13758 | . . . . . 6 ⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
| 17 | 16, 12 | nndivred 12240 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
| 18 | 12 | nnnn0d 12503 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ0) |
| 19 | 18 | nn0ge0d 12506 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (2↑𝑚)) |
| 20 | mulge0 11696 | . . . . . . . 8 ⊢ ((((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦)) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 ≤ (2↑𝑚))) → 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) | |
| 21 | 6, 13, 19, 20 | syl12anc 836 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) |
| 22 | flge0nn0 13782 | . . . . . . 7 ⊢ ((((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℕ0) | |
| 23 | 14, 21, 22 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℕ0) |
| 24 | 23 | nn0ge0d 12506 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (⌊‘((𝐹‘𝑦) · (2↑𝑚)))) |
| 25 | 12 | nngt0d 12235 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 < (2↑𝑚)) |
| 26 | divge0 12052 | . . . . 5 ⊢ ((((⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ ∧ 0 ≤ (⌊‘((𝐹‘𝑦) · (2↑𝑚)))) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 < (2↑𝑚))) → 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | |
| 27 | 16, 24, 13, 25, 26 | syl22anc 838 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
| 28 | elrege0 13415 | . . . 4 ⊢ (((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ (((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)))) | |
| 29 | 17, 27, 28 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞)) |
| 30 | 29 | ralrimivva 3180 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞)) |
| 31 | mbfi1fseq.3 | . . 3 ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | |
| 32 | 31 | fmpo 8047 | . 2 ⊢ (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
| 33 | 30, 32 | sylib 218 | 1 ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ℝcr 11067 0cc0 11068 · cmul 11073 +∞cpnf 11205 < clt 11208 ≤ cle 11209 / cdiv 11835 ℕcn 12186 2c2 12241 ℕ0cn0 12442 [,)cico 13308 ⌊cfl 13752 ↑cexp 14026 MblFncmbf 25515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-ico 13312 df-fl 13754 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: mbfi1fseqlem5 25620 |
| Copyright terms: Public domain | W3C validator |