Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcoel | Structured version Visualization version GIF version |
Description: If the relation produces open sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orvccel.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
orvccel.2 | ⊢ (𝜑 → 𝐽 ∈ Top) |
orvccel.3 | ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) |
orvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
orvcoel.5 | ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ 𝐽) |
Ref | Expression |
---|---|
orvcoel | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvccel.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | orvccel.2 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | orvccel.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) | |
4 | orvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | orvcval4 32421 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
6 | 2 | sgsiga 32104 | . . 3 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
7 | sssigagen 32107 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽)) | |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ⊆ (sigaGen‘𝐽)) |
9 | orvcoel.5 | . . . 4 ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ 𝐽) | |
10 | 8, 9 | sseldd 3927 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ (sigaGen‘𝐽)) |
11 | 1, 6, 3, 10 | mbfmcnvima 32218 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴}) ∈ 𝑆) |
12 | 5, 11 | eqeltrd 2841 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 {crab 3070 ⊆ wss 3892 ∪ cuni 4845 class class class wbr 5079 ◡ccnv 5588 ran crn 5590 “ cima 5592 ‘cfv 6431 (class class class)co 7269 Topctop 22038 sigAlgebracsiga 32070 sigaGencsigagen 32100 MblFnMcmbfm 32211 ∘RV/𝑐corvc 32416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-fo 6437 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-map 8598 df-siga 32071 df-sigagen 32101 df-mbfm 32212 df-orvc 32417 |
This theorem is referenced by: orrvcoel 32426 |
Copyright terms: Public domain | W3C validator |