Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcoel Structured version   Visualization version   GIF version

Theorem orvcoel 32422
Description: If the relation produces open sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvccel.1 (𝜑𝑆 ran sigAlgebra)
orvccel.2 (𝜑𝐽 ∈ Top)
orvccel.3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
orvccel.4 (𝜑𝐴𝑉)
orvcoel.5 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ 𝐽)
Assertion
Ref Expression
orvcoel (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ 𝑆)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋   𝑦,𝐽
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑦)   𝑉(𝑦)

Proof of Theorem orvcoel
StepHypRef Expression
1 orvccel.1 . . 3 (𝜑𝑆 ran sigAlgebra)
2 orvccel.2 . . 3 (𝜑𝐽 ∈ Top)
3 orvccel.3 . . 3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
4 orvccel.4 . . 3 (𝜑𝐴𝑉)
51, 2, 3, 4orvcval4 32421 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
62sgsiga 32104 . . 3 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
7 sssigagen 32107 . . . . 5 (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽))
82, 7syl 17 . . . 4 (𝜑𝐽 ⊆ (sigaGen‘𝐽))
9 orvcoel.5 . . . 4 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ 𝐽)
108, 9sseldd 3927 . . 3 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ (sigaGen‘𝐽))
111, 6, 3, 10mbfmcnvima 32218 . 2 (𝜑 → (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}) ∈ 𝑆)
125, 11eqeltrd 2841 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  {crab 3070  wss 3892   cuni 4845   class class class wbr 5079  ccnv 5588  ran crn 5590  cima 5592  cfv 6431  (class class class)co 7269  Topctop 22038  sigAlgebracsiga 32070  sigaGencsigagen 32100  MblFnMcmbfm 32211  RV/𝑐corvc 32416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-fo 6437  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-1st 7822  df-2nd 7823  df-map 8598  df-siga 32071  df-sigagen 32101  df-mbfm 32212  df-orvc 32417
This theorem is referenced by:  orrvcoel  32426
  Copyright terms: Public domain W3C validator