Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcoel Structured version   Visualization version   GIF version

Theorem orvcoel 32428
Description: If the relation produces open sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvccel.1 (𝜑𝑆 ran sigAlgebra)
orvccel.2 (𝜑𝐽 ∈ Top)
orvccel.3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
orvccel.4 (𝜑𝐴𝑉)
orvcoel.5 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ 𝐽)
Assertion
Ref Expression
orvcoel (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ 𝑆)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋   𝑦,𝐽
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑦)   𝑉(𝑦)

Proof of Theorem orvcoel
StepHypRef Expression
1 orvccel.1 . . 3 (𝜑𝑆 ran sigAlgebra)
2 orvccel.2 . . 3 (𝜑𝐽 ∈ Top)
3 orvccel.3 . . 3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
4 orvccel.4 . . 3 (𝜑𝐴𝑉)
51, 2, 3, 4orvcval4 32427 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
62sgsiga 32110 . . 3 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
7 sssigagen 32113 . . . . 5 (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽))
82, 7syl 17 . . . 4 (𝜑𝐽 ⊆ (sigaGen‘𝐽))
9 orvcoel.5 . . . 4 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ 𝐽)
108, 9sseldd 3922 . . 3 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ (sigaGen‘𝐽))
111, 6, 3, 10mbfmcnvima 32224 . 2 (𝜑 → (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}) ∈ 𝑆)
125, 11eqeltrd 2839 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  {crab 3068  wss 3887   cuni 4839   class class class wbr 5074  ccnv 5588  ran crn 5590  cima 5592  cfv 6433  (class class class)co 7275  Topctop 22042  sigAlgebracsiga 32076  sigaGencsigagen 32106  MblFnMcmbfm 32217  RV/𝑐corvc 32422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-siga 32077  df-sigagen 32107  df-mbfm 32218  df-orvc 32423
This theorem is referenced by:  orrvcoel  32432
  Copyright terms: Public domain W3C validator