Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcoel Structured version   Visualization version   GIF version

Theorem orvcoel 34467
Description: If the relation produces open sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvccel.1 (𝜑𝑆 ran sigAlgebra)
orvccel.2 (𝜑𝐽 ∈ Top)
orvccel.3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
orvccel.4 (𝜑𝐴𝑉)
orvcoel.5 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ 𝐽)
Assertion
Ref Expression
orvcoel (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ 𝑆)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋   𝑦,𝐽
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑦)   𝑉(𝑦)

Proof of Theorem orvcoel
StepHypRef Expression
1 orvccel.1 . . 3 (𝜑𝑆 ran sigAlgebra)
2 orvccel.2 . . 3 (𝜑𝐽 ∈ Top)
3 orvccel.3 . . 3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
4 orvccel.4 . . 3 (𝜑𝐴𝑉)
51, 2, 3, 4orvcval4 34466 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
62sgsiga 34147 . . 3 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
7 sssigagen 34150 . . . . 5 (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽))
82, 7syl 17 . . . 4 (𝜑𝐽 ⊆ (sigaGen‘𝐽))
9 orvcoel.5 . . . 4 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ 𝐽)
108, 9sseldd 3930 . . 3 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ (sigaGen‘𝐽))
111, 6, 3, 10mbfmcnvima 34260 . 2 (𝜑 → (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}) ∈ 𝑆)
125, 11eqeltrd 2831 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  {crab 3395  wss 3897   cuni 4854   class class class wbr 5086  ccnv 5610  ran crn 5612  cima 5614  cfv 6476  (class class class)co 7341  Topctop 22803  sigAlgebracsiga 34113  sigaGencsigagen 34143  MblFnMcmbfm 34254  RV/𝑐corvc 34461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-siga 34114  df-sigagen 34144  df-mbfm 34255  df-orvc 34462
This theorem is referenced by:  orrvcoel  34471
  Copyright terms: Public domain W3C validator