![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvccel | Structured version Visualization version GIF version |
Description: If the relation produces closed sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orvccel.1 | β’ (π β π β βͺ ran sigAlgebra) |
orvccel.2 | β’ (π β π½ β Top) |
orvccel.3 | β’ (π β π β (πMblFnM(sigaGenβπ½))) |
orvccel.4 | β’ (π β π΄ β π) |
orvccel.5 | β’ (π β {π¦ β βͺ π½ β£ π¦π π΄} β (Clsdβπ½)) |
Ref | Expression |
---|---|
orvccel | β’ (π β (πβRV/ππ π΄) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvccel.1 | . . 3 β’ (π β π β βͺ ran sigAlgebra) | |
2 | orvccel.2 | . . 3 β’ (π β π½ β Top) | |
3 | orvccel.3 | . . 3 β’ (π β π β (πMblFnM(sigaGenβπ½))) | |
4 | orvccel.4 | . . 3 β’ (π β π΄ β π) | |
5 | 1, 2, 3, 4 | orvcval4 33925 | . 2 β’ (π β (πβRV/ππ π΄) = (β‘π β {π¦ β βͺ π½ β£ π¦π π΄})) |
6 | 2 | sgsiga 33606 | . . 3 β’ (π β (sigaGenβπ½) β βͺ ran sigAlgebra) |
7 | cldssbrsiga 33651 | . . . . 5 β’ (π½ β Top β (Clsdβπ½) β (sigaGenβπ½)) | |
8 | 2, 7 | syl 17 | . . . 4 β’ (π β (Clsdβπ½) β (sigaGenβπ½)) |
9 | orvccel.5 | . . . 4 β’ (π β {π¦ β βͺ π½ β£ π¦π π΄} β (Clsdβπ½)) | |
10 | 8, 9 | sseldd 3983 | . . 3 β’ (π β {π¦ β βͺ π½ β£ π¦π π΄} β (sigaGenβπ½)) |
11 | 1, 6, 3, 10 | mbfmcnvima 33720 | . 2 β’ (π β (β‘π β {π¦ β βͺ π½ β£ π¦π π΄}) β π) |
12 | 5, 11 | eqeltrd 2832 | 1 β’ (π β (πβRV/ππ π΄) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2105 {crab 3431 β wss 3948 βͺ cuni 4908 class class class wbr 5148 β‘ccnv 5675 ran crn 5677 β cima 5679 βcfv 6543 (class class class)co 7412 Topctop 22716 Clsdccld 22841 sigAlgebracsiga 33572 sigaGencsigagen 33602 MblFnMcmbfm 33713 βRV/πcorvc 33920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-ac2 10464 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-oi 9511 df-dju 9902 df-card 9940 df-acn 9943 df-ac 10117 df-top 22717 df-cld 22844 df-siga 33573 df-sigagen 33603 df-mbfm 33714 df-orvc 33921 |
This theorem is referenced by: orrvccel 33931 |
Copyright terms: Public domain | W3C validator |