Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvccel | Structured version Visualization version GIF version |
Description: If the relation produces closed sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orvccel.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
orvccel.2 | ⊢ (𝜑 → 𝐽 ∈ Top) |
orvccel.3 | ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) |
orvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
orvccel.5 | ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
orvccel | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvccel.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | orvccel.2 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | orvccel.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) | |
4 | orvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | orvcval4 32427 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
6 | 2 | sgsiga 32110 | . . 3 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
7 | cldssbrsiga 32155 | . . . . 5 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) | |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
9 | orvccel.5 | . . . 4 ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ (Clsd‘𝐽)) | |
10 | 8, 9 | sseldd 3922 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ (sigaGen‘𝐽)) |
11 | 1, 6, 3, 10 | mbfmcnvima 32224 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴}) ∈ 𝑆) |
12 | 5, 11 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 ◡ccnv 5588 ran crn 5590 “ cima 5592 ‘cfv 6433 (class class class)co 7275 Topctop 22042 Clsdccld 22167 sigAlgebracsiga 32076 sigaGencsigagen 32106 MblFnMcmbfm 32217 ∘RV/𝑐corvc 32422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-ac 9872 df-top 22043 df-cld 22170 df-siga 32077 df-sigagen 32107 df-mbfm 32218 df-orvc 32423 |
This theorem is referenced by: orrvccel 32433 |
Copyright terms: Public domain | W3C validator |