| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvccel | Structured version Visualization version GIF version | ||
| Description: If the relation produces closed sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| orvccel.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| orvccel.2 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| orvccel.3 | ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) |
| orvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| orvccel.5 | ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ (Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| orvccel | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orvccel.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 2 | orvccel.2 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | orvccel.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) | |
| 4 | orvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | orvcval4 34422 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
| 6 | 2 | sgsiga 34102 | . . 3 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 7 | cldssbrsiga 34147 | . . . . 5 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) | |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
| 9 | orvccel.5 | . . . 4 ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ (Clsd‘𝐽)) | |
| 10 | 8, 9 | sseldd 3964 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ (sigaGen‘𝐽)) |
| 11 | 1, 6, 3, 10 | mbfmcnvima 34216 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴}) ∈ 𝑆) |
| 12 | 5, 11 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 {crab 3419 ⊆ wss 3931 ∪ cuni 4887 class class class wbr 5123 ◡ccnv 5664 ran crn 5666 “ cima 5668 ‘cfv 6541 (class class class)co 7413 Topctop 22847 Clsdccld 22970 sigAlgebracsiga 34068 sigaGencsigagen 34098 MblFnMcmbfm 34209 ∘RV/𝑐corvc 34417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-ac2 10485 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-oi 9532 df-dju 9923 df-card 9961 df-acn 9964 df-ac 10138 df-top 22848 df-cld 22973 df-siga 34069 df-sigagen 34099 df-mbfm 34210 df-orvc 34418 |
| This theorem is referenced by: orrvccel 34428 |
| Copyright terms: Public domain | W3C validator |