Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvccel Structured version   Visualization version   GIF version

Theorem orvccel 34471
Description: If the relation produces closed sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvccel.1 (𝜑𝑆 ran sigAlgebra)
orvccel.2 (𝜑𝐽 ∈ Top)
orvccel.3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
orvccel.4 (𝜑𝐴𝑉)
orvccel.5 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ (Clsd‘𝐽))
Assertion
Ref Expression
orvccel (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ 𝑆)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋   𝑦,𝐽
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑦)   𝑉(𝑦)

Proof of Theorem orvccel
StepHypRef Expression
1 orvccel.1 . . 3 (𝜑𝑆 ran sigAlgebra)
2 orvccel.2 . . 3 (𝜑𝐽 ∈ Top)
3 orvccel.3 . . 3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
4 orvccel.4 . . 3 (𝜑𝐴𝑉)
51, 2, 3, 4orvcval4 34469 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
62sgsiga 34150 . . 3 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
7 cldssbrsiga 34195 . . . . 5 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
82, 7syl 17 . . . 4 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
9 orvccel.5 . . . 4 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ (Clsd‘𝐽))
108, 9sseldd 3935 . . 3 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ (sigaGen‘𝐽))
111, 6, 3, 10mbfmcnvima 34263 . 2 (𝜑 → (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}) ∈ 𝑆)
125, 11eqeltrd 2831 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  {crab 3395  wss 3902   cuni 4859   class class class wbr 5091  ccnv 5615  ran crn 5617  cima 5619  cfv 6481  (class class class)co 7346  Topctop 22806  Clsdccld 22929  sigAlgebracsiga 34116  sigaGencsigagen 34146  MblFnMcmbfm 34257  RV/𝑐corvc 34464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-ac2 10351
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-dju 9791  df-card 9829  df-acn 9832  df-ac 10004  df-top 22807  df-cld 22932  df-siga 34117  df-sigagen 34147  df-mbfm 34258  df-orvc 34465
This theorem is referenced by:  orrvccel  34475
  Copyright terms: Public domain W3C validator