Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measge0 Structured version   Visualization version   GIF version

Theorem measge0 32281
Description: A measure is nonnegative. (Contributed by Thierry Arnoux, 9-Mar-2018.)
Assertion
Ref Expression
measge0 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → 0 ≤ (𝑀𝐴))

Proof of Theorem measge0
StepHypRef Expression
1 measvxrge0 32279 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
2 elxrge0 13259 . . 3 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
31, 2sylib 217 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
43simprd 496 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → 0 ≤ (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105   class class class wbr 5085  cfv 6463  (class class class)co 7313  0cc0 10941  +∞cpnf 11076  *cxr 11078  cle 11080  [,]cicc 13152  measurescmeas 32269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-addrcl 11002  ax-rnegex 11012  ax-cnre 11014
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-icc 13156  df-esum 32102  df-meas 32270
This theorem is referenced by:  sibfof  32413
  Copyright terms: Public domain W3C validator