![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measge0 | Structured version Visualization version GIF version |
Description: A measure is nonnegative. (Contributed by Thierry Arnoux, 9-Mar-2018.) |
Ref | Expression |
---|---|
measge0 | β’ ((π β (measuresβπ) β§ π΄ β π) β 0 β€ (πβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | measvxrge0 33501 | . . 3 β’ ((π β (measuresβπ) β§ π΄ β π) β (πβπ΄) β (0[,]+β)) | |
2 | elxrge0 13438 | . . 3 β’ ((πβπ΄) β (0[,]+β) β ((πβπ΄) β β* β§ 0 β€ (πβπ΄))) | |
3 | 1, 2 | sylib 217 | . 2 β’ ((π β (measuresβπ) β§ π΄ β π) β ((πβπ΄) β β* β§ 0 β€ (πβπ΄))) |
4 | 3 | simprd 494 | 1 β’ ((π β (measuresβπ) β§ π΄ β π) β 0 β€ (πβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β wcel 2104 class class class wbr 5147 βcfv 6542 (class class class)co 7411 0cc0 11112 +βcpnf 11249 β*cxr 11251 β€ cle 11253 [,]cicc 13331 measurescmeas 33491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-addrcl 11173 ax-rnegex 11183 ax-cnre 11185 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-icc 13335 df-esum 33324 df-meas 33492 |
This theorem is referenced by: sibfof 33637 |
Copyright terms: Public domain | W3C validator |