Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measge0 Structured version   Visualization version   GIF version

Theorem measge0 34204
Description: A measure is nonnegative. (Contributed by Thierry Arnoux, 9-Mar-2018.)
Assertion
Ref Expression
measge0 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → 0 ≤ (𝑀𝐴))

Proof of Theorem measge0
StepHypRef Expression
1 measvxrge0 34202 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
2 elxrge0 13425 . . 3 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
31, 2sylib 218 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
43simprd 495 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → 0 ≤ (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  +∞cpnf 11212  *cxr 11214  cle 11216  [,]cicc 13316  measurescmeas 34192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-addrcl 11136  ax-rnegex 11146  ax-cnre 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-icc 13320  df-esum 34025  df-meas 34193
This theorem is referenced by:  sibfof  34338
  Copyright terms: Public domain W3C validator