| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measle0 | Structured version Visualization version GIF version | ||
| Description: If the measure of a given set is bounded by zero, it is zero. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
| Ref | Expression |
|---|---|
| measle0 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → (𝑀‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → (𝑀‘𝐴) ≤ 0) | |
| 2 | measvxrge0 34236 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) | |
| 3 | elxrge0 13474 | . . . . 5 ⊢ ((𝑀‘𝐴) ∈ (0[,]+∞) ↔ ((𝑀‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝐴))) | |
| 4 | 2, 3 | sylib 218 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → ((𝑀‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝐴))) |
| 5 | 4 | 3adant3 1132 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → ((𝑀‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝐴))) |
| 6 | 5 | simprd 495 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → 0 ≤ (𝑀‘𝐴)) |
| 7 | 5 | simpld 494 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → (𝑀‘𝐴) ∈ ℝ*) |
| 8 | 0xr 11282 | . . 3 ⊢ 0 ∈ ℝ* | |
| 9 | xrletri3 13170 | . . 3 ⊢ (((𝑀‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑀‘𝐴) = 0 ↔ ((𝑀‘𝐴) ≤ 0 ∧ 0 ≤ (𝑀‘𝐴)))) | |
| 10 | 7, 8, 9 | sylancl 586 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → ((𝑀‘𝐴) = 0 ↔ ((𝑀‘𝐴) ≤ 0 ∧ 0 ≤ (𝑀‘𝐴)))) |
| 11 | 1, 6, 10 | mpbir2and 713 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → (𝑀‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 0cc0 11129 +∞cpnf 11266 ℝ*cxr 11268 ≤ cle 11270 [,]cicc 13365 measurescmeas 34226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-icc 13369 df-esum 34059 df-meas 34227 |
| This theorem is referenced by: aean 34275 |
| Copyright terms: Public domain | W3C validator |