Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measle0 Structured version   Visualization version   GIF version

Theorem measle0 34181
Description: If the measure of a given set is bounded by zero, it is zero. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Assertion
Ref Expression
measle0 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → (𝑀𝐴) = 0)

Proof of Theorem measle0
StepHypRef Expression
1 simp3 1138 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → (𝑀𝐴) ≤ 0)
2 measvxrge0 34178 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
3 elxrge0 13360 . . . . 5 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
42, 3sylib 218 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
543adant3 1132 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
65simprd 495 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → 0 ≤ (𝑀𝐴))
75simpld 494 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → (𝑀𝐴) ∈ ℝ*)
8 0xr 11162 . . 3 0 ∈ ℝ*
9 xrletri3 13056 . . 3 (((𝑀𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑀𝐴) = 0 ↔ ((𝑀𝐴) ≤ 0 ∧ 0 ≤ (𝑀𝐴))))
107, 8, 9sylancl 586 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → ((𝑀𝐴) = 0 ↔ ((𝑀𝐴) ≤ 0 ∧ 0 ≤ (𝑀𝐴))))
111, 6, 10mpbir2and 713 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → (𝑀𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009  +∞cpnf 11146  *cxr 11148  cle 11150  [,]cicc 13251  measurescmeas 34168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-addrcl 11070  ax-rnegex 11080  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-icc 13255  df-esum 34001  df-meas 34169
This theorem is referenced by:  aean  34217
  Copyright terms: Public domain W3C validator