Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measle0 Structured version   Visualization version   GIF version

Theorem measle0 34198
Description: If the measure of a given set is bounded by zero, it is zero. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Assertion
Ref Expression
measle0 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → (𝑀𝐴) = 0)

Proof of Theorem measle0
StepHypRef Expression
1 simp3 1138 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → (𝑀𝐴) ≤ 0)
2 measvxrge0 34195 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
3 elxrge0 13418 . . . . 5 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
42, 3sylib 218 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
543adant3 1132 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
65simprd 495 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → 0 ≤ (𝑀𝐴))
75simpld 494 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → (𝑀𝐴) ∈ ℝ*)
8 0xr 11221 . . 3 0 ∈ ℝ*
9 xrletri3 13114 . . 3 (((𝑀𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑀𝐴) = 0 ↔ ((𝑀𝐴) ≤ 0 ∧ 0 ≤ (𝑀𝐴))))
107, 8, 9sylancl 586 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → ((𝑀𝐴) = 0 ↔ ((𝑀𝐴) ≤ 0 ∧ 0 ≤ (𝑀𝐴))))
111, 6, 10mpbir2and 713 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ≤ 0) → (𝑀𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068  +∞cpnf 11205  *cxr 11207  cle 11209  [,]cicc 13309  measurescmeas 34185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-addrcl 11129  ax-rnegex 11139  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-icc 13313  df-esum 34018  df-meas 34186
This theorem is referenced by:  aean  34234
  Copyright terms: Public domain W3C validator