![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measle0 | Structured version Visualization version GIF version |
Description: If the measure of a given set is bounded by zero, it is zero. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
measle0 | β’ ((π β (measuresβπ) β§ π΄ β π β§ (πβπ΄) β€ 0) β (πβπ΄) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 β’ ((π β (measuresβπ) β§ π΄ β π β§ (πβπ΄) β€ 0) β (πβπ΄) β€ 0) | |
2 | measvxrge0 33489 | . . . . 5 β’ ((π β (measuresβπ) β§ π΄ β π) β (πβπ΄) β (0[,]+β)) | |
3 | elxrge0 13438 | . . . . 5 β’ ((πβπ΄) β (0[,]+β) β ((πβπ΄) β β* β§ 0 β€ (πβπ΄))) | |
4 | 2, 3 | sylib 217 | . . . 4 β’ ((π β (measuresβπ) β§ π΄ β π) β ((πβπ΄) β β* β§ 0 β€ (πβπ΄))) |
5 | 4 | 3adant3 1132 | . . 3 β’ ((π β (measuresβπ) β§ π΄ β π β§ (πβπ΄) β€ 0) β ((πβπ΄) β β* β§ 0 β€ (πβπ΄))) |
6 | 5 | simprd 496 | . 2 β’ ((π β (measuresβπ) β§ π΄ β π β§ (πβπ΄) β€ 0) β 0 β€ (πβπ΄)) |
7 | 5 | simpld 495 | . . 3 β’ ((π β (measuresβπ) β§ π΄ β π β§ (πβπ΄) β€ 0) β (πβπ΄) β β*) |
8 | 0xr 11265 | . . 3 β’ 0 β β* | |
9 | xrletri3 13137 | . . 3 β’ (((πβπ΄) β β* β§ 0 β β*) β ((πβπ΄) = 0 β ((πβπ΄) β€ 0 β§ 0 β€ (πβπ΄)))) | |
10 | 7, 8, 9 | sylancl 586 | . 2 β’ ((π β (measuresβπ) β§ π΄ β π β§ (πβπ΄) β€ 0) β ((πβπ΄) = 0 β ((πβπ΄) β€ 0 β§ 0 β€ (πβπ΄)))) |
11 | 1, 6, 10 | mpbir2and 711 | 1 β’ ((π β (measuresβπ) β§ π΄ β π β§ (πβπ΄) β€ 0) β (πβπ΄) = 0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 βcfv 6543 (class class class)co 7411 0cc0 11112 +βcpnf 11249 β*cxr 11251 β€ cle 11253 [,]cicc 13331 measurescmeas 33479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-addrcl 11173 ax-rnegex 11183 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-icc 13335 df-esum 33312 df-meas 33480 |
This theorem is referenced by: aean 33528 |
Copyright terms: Public domain | W3C validator |