![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measle0 | Structured version Visualization version GIF version |
Description: If the measure of a given set is bounded by zero, it is zero. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
measle0 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → (𝑀‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → (𝑀‘𝐴) ≤ 0) | |
2 | measvxrge0 34169 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) | |
3 | elxrge0 13517 | . . . . 5 ⊢ ((𝑀‘𝐴) ∈ (0[,]+∞) ↔ ((𝑀‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝐴))) | |
4 | 2, 3 | sylib 218 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → ((𝑀‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝐴))) |
5 | 4 | 3adant3 1132 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → ((𝑀‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝐴))) |
6 | 5 | simprd 495 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → 0 ≤ (𝑀‘𝐴)) |
7 | 5 | simpld 494 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → (𝑀‘𝐴) ∈ ℝ*) |
8 | 0xr 11337 | . . 3 ⊢ 0 ∈ ℝ* | |
9 | xrletri3 13216 | . . 3 ⊢ (((𝑀‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑀‘𝐴) = 0 ↔ ((𝑀‘𝐴) ≤ 0 ∧ 0 ≤ (𝑀‘𝐴)))) | |
10 | 7, 8, 9 | sylancl 585 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → ((𝑀‘𝐴) = 0 ↔ ((𝑀‘𝐴) ≤ 0 ∧ 0 ≤ (𝑀‘𝐴)))) |
11 | 1, 6, 10 | mpbir2and 712 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ≤ 0) → (𝑀‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 ≤ cle 11325 [,]cicc 13410 measurescmeas 34159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 df-esum 33992 df-meas 34160 |
This theorem is referenced by: aean 34208 |
Copyright terms: Public domain | W3C validator |