Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mppsthm Structured version   Visualization version   GIF version

Theorem mppsthm 35407
Description: A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mppsthm.j 𝐽 = (mPPSt‘𝑇)
mppsthm.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
mppsthm 𝐽𝑈

Proof of Theorem mppsthm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . 3 ((mStRed‘𝑇)‘𝑥) = ((mStRed‘𝑇)‘𝑥)
2 eqid 2726 . . . 4 (mStRed‘𝑇) = (mStRed‘𝑇)
3 mppsthm.j . . . 4 𝐽 = (mPPSt‘𝑇)
4 mppsthm.u . . . 4 𝑈 = (mThm‘𝑇)
52, 3, 4mthmi 35405 . . 3 ((𝑥𝐽 ∧ ((mStRed‘𝑇)‘𝑥) = ((mStRed‘𝑇)‘𝑥)) → 𝑥𝑈)
61, 5mpan2 689 . 2 (𝑥𝐽𝑥𝑈)
76ssriv 3983 1 𝐽𝑈
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wss 3947  cfv 6554  mStRedcmsr 35302  mPPStcmpps 35306  mThmcmthm 35307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-ot 4642  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-1st 8003  df-2nd 8004  df-mpst 35321  df-msr 35322  df-mpps 35326  df-mthm 35327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator