Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mppsthm Structured version   Visualization version   GIF version

Theorem mppsthm 35573
Description: A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mppsthm.j 𝐽 = (mPPSt‘𝑇)
mppsthm.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
mppsthm 𝐽𝑈

Proof of Theorem mppsthm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 ((mStRed‘𝑇)‘𝑥) = ((mStRed‘𝑇)‘𝑥)
2 eqid 2730 . . . 4 (mStRed‘𝑇) = (mStRed‘𝑇)
3 mppsthm.j . . . 4 𝐽 = (mPPSt‘𝑇)
4 mppsthm.u . . . 4 𝑈 = (mThm‘𝑇)
52, 3, 4mthmi 35571 . . 3 ((𝑥𝐽 ∧ ((mStRed‘𝑇)‘𝑥) = ((mStRed‘𝑇)‘𝑥)) → 𝑥𝑈)
61, 5mpan2 691 . 2 (𝑥𝐽𝑥𝑈)
76ssriv 3953 1 𝐽𝑈
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wss 3917  cfv 6514  mStRedcmsr 35468  mPPStcmpps 35472  mThmcmthm 35473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-1st 7971  df-2nd 7972  df-mpst 35487  df-msr 35488  df-mpps 35492  df-mthm 35493
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator