| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mppsthm | Structured version Visualization version GIF version | ||
| Description: A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mppsthm.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
| mppsthm.u | ⊢ 𝑈 = (mThm‘𝑇) |
| Ref | Expression |
|---|---|
| mppsthm | ⊢ 𝐽 ⊆ 𝑈 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ ((mStRed‘𝑇)‘𝑥) = ((mStRed‘𝑇)‘𝑥) | |
| 2 | eqid 2735 | . . . 4 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
| 3 | mppsthm.j | . . . 4 ⊢ 𝐽 = (mPPSt‘𝑇) | |
| 4 | mppsthm.u | . . . 4 ⊢ 𝑈 = (mThm‘𝑇) | |
| 5 | 2, 3, 4 | mthmi 35545 | . . 3 ⊢ ((𝑥 ∈ 𝐽 ∧ ((mStRed‘𝑇)‘𝑥) = ((mStRed‘𝑇)‘𝑥)) → 𝑥 ∈ 𝑈) |
| 6 | 1, 5 | mpan2 691 | . 2 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ∈ 𝑈) |
| 7 | 6 | ssriv 3962 | 1 ⊢ 𝐽 ⊆ 𝑈 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6530 mStRedcmsr 35442 mPPStcmpps 35446 mThmcmthm 35447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-1st 7986 df-2nd 7987 df-mpst 35461 df-msr 35462 df-mpps 35466 df-mthm 35467 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |