Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmsta Structured version   Visualization version   GIF version

Theorem mthmsta 33440
Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmsta.u 𝑈 = (mThm‘𝑇)
mthmsta.s 𝑆 = (mPreSt‘𝑇)
Assertion
Ref Expression
mthmsta 𝑈𝑆

Proof of Theorem mthmsta
StepHypRef Expression
1 eqid 2738 . . 3 (mStRed‘𝑇) = (mStRed‘𝑇)
2 eqid 2738 . . 3 (mPPSt‘𝑇) = (mPPSt‘𝑇)
3 mthmsta.u . . 3 𝑈 = (mThm‘𝑇)
41, 2, 3mthmval 33437 . 2 𝑈 = ((mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇)))
5 cnvimass 5978 . . 3 ((mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ dom (mStRed‘𝑇)
6 mthmsta.s . . . . 5 𝑆 = (mPreSt‘𝑇)
76, 1msrf 33404 . . . 4 (mStRed‘𝑇):𝑆𝑆
87fdmi 6596 . . 3 dom (mStRed‘𝑇) = 𝑆
95, 8sseqtri 3953 . 2 ((mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ 𝑆
104, 9eqsstri 3951 1 𝑈𝑆
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wss 3883  ccnv 5579  dom cdm 5580  cima 5583  cfv 6418  mPreStcmpst 33335  mStRedcmsr 33336  mPPStcmpps 33340  mThmcmthm 33341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1st 7804  df-2nd 7805  df-mpst 33355  df-msr 33356  df-mthm 33361
This theorem is referenced by:  mthmpps  33444
  Copyright terms: Public domain W3C validator