![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmsta | Structured version Visualization version GIF version |
Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmsta.u | โข ๐ = (mThmโ๐) |
mthmsta.s | โข ๐ = (mPreStโ๐) |
Ref | Expression |
---|---|
mthmsta | โข ๐ โ ๐ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 โข (mStRedโ๐) = (mStRedโ๐) | |
2 | eqid 2732 | . . 3 โข (mPPStโ๐) = (mPPStโ๐) | |
3 | mthmsta.u | . . 3 โข ๐ = (mThmโ๐) | |
4 | 1, 2, 3 | mthmval 34852 | . 2 โข ๐ = (โก(mStRedโ๐) โ ((mStRedโ๐) โ (mPPStโ๐))) |
5 | cnvimass 6080 | . . 3 โข (โก(mStRedโ๐) โ ((mStRedโ๐) โ (mPPStโ๐))) โ dom (mStRedโ๐) | |
6 | mthmsta.s | . . . . 5 โข ๐ = (mPreStโ๐) | |
7 | 6, 1 | msrf 34819 | . . . 4 โข (mStRedโ๐):๐โถ๐ |
8 | 7 | fdmi 6729 | . . 3 โข dom (mStRedโ๐) = ๐ |
9 | 5, 8 | sseqtri 4018 | . 2 โข (โก(mStRedโ๐) โ ((mStRedโ๐) โ (mPPStโ๐))) โ ๐ |
10 | 4, 9 | eqsstri 4016 | 1 โข ๐ โ ๐ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 โ wss 3948 โกccnv 5675 dom cdm 5676 โ cima 5679 โcfv 6543 mPreStcmpst 34750 mStRedcmsr 34751 mPPStcmpps 34755 mThmcmthm 34756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1st 7977 df-2nd 7978 df-mpst 34770 df-msr 34771 df-mthm 34776 |
This theorem is referenced by: mthmpps 34859 |
Copyright terms: Public domain | W3C validator |