Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmsta Structured version   Visualization version   GIF version

Theorem mthmsta 35643
Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmsta.u 𝑈 = (mThm‘𝑇)
mthmsta.s 𝑆 = (mPreSt‘𝑇)
Assertion
Ref Expression
mthmsta 𝑈𝑆

Proof of Theorem mthmsta
StepHypRef Expression
1 eqid 2733 . . 3 (mStRed‘𝑇) = (mStRed‘𝑇)
2 eqid 2733 . . 3 (mPPSt‘𝑇) = (mPPSt‘𝑇)
3 mthmsta.u . . 3 𝑈 = (mThm‘𝑇)
41, 2, 3mthmval 35640 . 2 𝑈 = ((mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇)))
5 cnvimass 6035 . . 3 ((mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ dom (mStRed‘𝑇)
6 mthmsta.s . . . . 5 𝑆 = (mPreSt‘𝑇)
76, 1msrf 35607 . . . 4 (mStRed‘𝑇):𝑆𝑆
87fdmi 6667 . . 3 dom (mStRed‘𝑇) = 𝑆
95, 8sseqtri 3979 . 2 ((mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ 𝑆
104, 9eqsstri 3977 1 𝑈𝑆
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3898  ccnv 5618  dom cdm 5619  cima 5622  cfv 6486  mPreStcmpst 35538  mStRedcmsr 35539  mPPStcmpps 35543  mThmcmthm 35544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-ot 4584  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-1st 7927  df-2nd 7928  df-mpst 35558  df-msr 35559  df-mthm 35564
This theorem is referenced by:  mthmpps  35647
  Copyright terms: Public domain W3C validator