Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmsta | Structured version Visualization version GIF version |
Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmsta.u | ⊢ 𝑈 = (mThm‘𝑇) |
mthmsta.s | ⊢ 𝑆 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
mthmsta | ⊢ 𝑈 ⊆ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
2 | eqid 2737 | . . 3 ⊢ (mPPSt‘𝑇) = (mPPSt‘𝑇) | |
3 | mthmsta.u | . . 3 ⊢ 𝑈 = (mThm‘𝑇) | |
4 | 1, 2, 3 | mthmval 33834 | . 2 ⊢ 𝑈 = (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) |
5 | cnvimass 6023 | . . 3 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ dom (mStRed‘𝑇) | |
6 | mthmsta.s | . . . . 5 ⊢ 𝑆 = (mPreSt‘𝑇) | |
7 | 6, 1 | msrf 33801 | . . . 4 ⊢ (mStRed‘𝑇):𝑆⟶𝑆 |
8 | 7 | fdmi 6667 | . . 3 ⊢ dom (mStRed‘𝑇) = 𝑆 |
9 | 5, 8 | sseqtri 3971 | . 2 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ 𝑆 |
10 | 4, 9 | eqsstri 3969 | 1 ⊢ 𝑈 ⊆ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3901 ◡ccnv 5623 dom cdm 5624 “ cima 5627 ‘cfv 6483 mPreStcmpst 33732 mStRedcmsr 33733 mPPStcmpps 33737 mThmcmthm 33738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-1st 7903 df-2nd 7904 df-mpst 33752 df-msr 33753 df-mthm 33758 |
This theorem is referenced by: mthmpps 33841 |
Copyright terms: Public domain | W3C validator |