![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmsta | Structured version Visualization version GIF version |
Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmsta.u | ⊢ 𝑈 = (mThm‘𝑇) |
mthmsta.s | ⊢ 𝑆 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
mthmsta | ⊢ 𝑈 ⊆ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
2 | eqid 2772 | . . 3 ⊢ (mPPSt‘𝑇) = (mPPSt‘𝑇) | |
3 | mthmsta.u | . . 3 ⊢ 𝑈 = (mThm‘𝑇) | |
4 | 1, 2, 3 | mthmval 32342 | . 2 ⊢ 𝑈 = (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) |
5 | cnvimass 5783 | . . 3 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ dom (mStRed‘𝑇) | |
6 | mthmsta.s | . . . . 5 ⊢ 𝑆 = (mPreSt‘𝑇) | |
7 | 6, 1 | msrf 32309 | . . . 4 ⊢ (mStRed‘𝑇):𝑆⟶𝑆 |
8 | 7 | fdmi 6348 | . . 3 ⊢ dom (mStRed‘𝑇) = 𝑆 |
9 | 5, 8 | sseqtri 3887 | . 2 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ 𝑆 |
10 | 4, 9 | eqsstri 3885 | 1 ⊢ 𝑈 ⊆ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ⊆ wss 3823 ◡ccnv 5400 dom cdm 5401 “ cima 5404 ‘cfv 6182 mPreStcmpst 32240 mStRedcmsr 32241 mPPStcmpps 32245 mThmcmthm 32246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-ot 4444 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5306 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-1st 7495 df-2nd 7496 df-mpst 32260 df-msr 32261 df-mthm 32266 |
This theorem is referenced by: mthmpps 32349 |
Copyright terms: Public domain | W3C validator |