| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmsta | Structured version Visualization version GIF version | ||
| Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mthmsta.u | ⊢ 𝑈 = (mThm‘𝑇) |
| mthmsta.s | ⊢ 𝑆 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| mthmsta | ⊢ 𝑈 ⊆ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
| 2 | eqid 2733 | . . 3 ⊢ (mPPSt‘𝑇) = (mPPSt‘𝑇) | |
| 3 | mthmsta.u | . . 3 ⊢ 𝑈 = (mThm‘𝑇) | |
| 4 | 1, 2, 3 | mthmval 35640 | . 2 ⊢ 𝑈 = (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) |
| 5 | cnvimass 6035 | . . 3 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ dom (mStRed‘𝑇) | |
| 6 | mthmsta.s | . . . . 5 ⊢ 𝑆 = (mPreSt‘𝑇) | |
| 7 | 6, 1 | msrf 35607 | . . . 4 ⊢ (mStRed‘𝑇):𝑆⟶𝑆 |
| 8 | 7 | fdmi 6667 | . . 3 ⊢ dom (mStRed‘𝑇) = 𝑆 |
| 9 | 5, 8 | sseqtri 3979 | . 2 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ 𝑆 |
| 10 | 4, 9 | eqsstri 3977 | 1 ⊢ 𝑈 ⊆ 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3898 ◡ccnv 5618 dom cdm 5619 “ cima 5622 ‘cfv 6486 mPreStcmpst 35538 mStRedcmsr 35539 mPPStcmpps 35543 mThmcmthm 35544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-ot 4584 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-1st 7927 df-2nd 7928 df-mpst 35558 df-msr 35559 df-mthm 35564 |
| This theorem is referenced by: mthmpps 35647 |
| Copyright terms: Public domain | W3C validator |