| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmsta | Structured version Visualization version GIF version | ||
| Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mthmsta.u | ⊢ 𝑈 = (mThm‘𝑇) |
| mthmsta.s | ⊢ 𝑆 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| mthmsta | ⊢ 𝑈 ⊆ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
| 2 | eqid 2737 | . . 3 ⊢ (mPPSt‘𝑇) = (mPPSt‘𝑇) | |
| 3 | mthmsta.u | . . 3 ⊢ 𝑈 = (mThm‘𝑇) | |
| 4 | 1, 2, 3 | mthmval 35580 | . 2 ⊢ 𝑈 = (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) |
| 5 | cnvimass 6100 | . . 3 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ dom (mStRed‘𝑇) | |
| 6 | mthmsta.s | . . . . 5 ⊢ 𝑆 = (mPreSt‘𝑇) | |
| 7 | 6, 1 | msrf 35547 | . . . 4 ⊢ (mStRed‘𝑇):𝑆⟶𝑆 |
| 8 | 7 | fdmi 6747 | . . 3 ⊢ dom (mStRed‘𝑇) = 𝑆 |
| 9 | 5, 8 | sseqtri 4032 | . 2 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ 𝑆 |
| 10 | 4, 9 | eqsstri 4030 | 1 ⊢ 𝑈 ⊆ 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3951 ◡ccnv 5684 dom cdm 5685 “ cima 5688 ‘cfv 6561 mPreStcmpst 35478 mStRedcmsr 35479 mPPStcmpps 35483 mThmcmthm 35484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-ot 4635 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-1st 8014 df-2nd 8015 df-mpst 35498 df-msr 35499 df-mthm 35504 |
| This theorem is referenced by: mthmpps 35587 |
| Copyright terms: Public domain | W3C validator |