| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmsta | Structured version Visualization version GIF version | ||
| Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mthmsta.u | ⊢ 𝑈 = (mThm‘𝑇) |
| mthmsta.s | ⊢ 𝑆 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| mthmsta | ⊢ 𝑈 ⊆ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
| 2 | eqid 2731 | . . 3 ⊢ (mPPSt‘𝑇) = (mPPSt‘𝑇) | |
| 3 | mthmsta.u | . . 3 ⊢ 𝑈 = (mThm‘𝑇) | |
| 4 | 1, 2, 3 | mthmval 35607 | . 2 ⊢ 𝑈 = (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) |
| 5 | cnvimass 6031 | . . 3 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ dom (mStRed‘𝑇) | |
| 6 | mthmsta.s | . . . . 5 ⊢ 𝑆 = (mPreSt‘𝑇) | |
| 7 | 6, 1 | msrf 35574 | . . . 4 ⊢ (mStRed‘𝑇):𝑆⟶𝑆 |
| 8 | 7 | fdmi 6662 | . . 3 ⊢ dom (mStRed‘𝑇) = 𝑆 |
| 9 | 5, 8 | sseqtri 3983 | . 2 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ 𝑆 |
| 10 | 4, 9 | eqsstri 3981 | 1 ⊢ 𝑈 ⊆ 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3902 ◡ccnv 5615 dom cdm 5616 “ cima 5619 ‘cfv 6481 mPreStcmpst 35505 mStRedcmsr 35506 mPPStcmpps 35510 mThmcmthm 35511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1st 7921 df-2nd 7922 df-mpst 35525 df-msr 35526 df-mthm 35531 |
| This theorem is referenced by: mthmpps 35614 |
| Copyright terms: Public domain | W3C validator |