Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmsta Structured version   Visualization version   GIF version

Theorem mthmsta 33540
Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmsta.u 𝑈 = (mThm‘𝑇)
mthmsta.s 𝑆 = (mPreSt‘𝑇)
Assertion
Ref Expression
mthmsta 𝑈𝑆

Proof of Theorem mthmsta
StepHypRef Expression
1 eqid 2738 . . 3 (mStRed‘𝑇) = (mStRed‘𝑇)
2 eqid 2738 . . 3 (mPPSt‘𝑇) = (mPPSt‘𝑇)
3 mthmsta.u . . 3 𝑈 = (mThm‘𝑇)
41, 2, 3mthmval 33537 . 2 𝑈 = ((mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇)))
5 cnvimass 5989 . . 3 ((mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ dom (mStRed‘𝑇)
6 mthmsta.s . . . . 5 𝑆 = (mPreSt‘𝑇)
76, 1msrf 33504 . . . 4 (mStRed‘𝑇):𝑆𝑆
87fdmi 6612 . . 3 dom (mStRed‘𝑇) = 𝑆
95, 8sseqtri 3957 . 2 ((mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ 𝑆
104, 9eqsstri 3955 1 𝑈𝑆
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wss 3887  ccnv 5588  dom cdm 5589  cima 5592  cfv 6433  mPreStcmpst 33435  mStRedcmsr 33436  mPPStcmpps 33440  mThmcmthm 33441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1st 7831  df-2nd 7832  df-mpst 33455  df-msr 33456  df-mthm 33461
This theorem is referenced by:  mthmpps  33544
  Copyright terms: Public domain W3C validator