Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmsta | Structured version Visualization version GIF version |
Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmsta.u | ⊢ 𝑈 = (mThm‘𝑇) |
mthmsta.s | ⊢ 𝑆 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
mthmsta | ⊢ 𝑈 ⊆ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
2 | eqid 2737 | . . 3 ⊢ (mPPSt‘𝑇) = (mPPSt‘𝑇) | |
3 | mthmsta.u | . . 3 ⊢ 𝑈 = (mThm‘𝑇) | |
4 | 1, 2, 3 | mthmval 33250 | . 2 ⊢ 𝑈 = (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) |
5 | cnvimass 5949 | . . 3 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ dom (mStRed‘𝑇) | |
6 | mthmsta.s | . . . . 5 ⊢ 𝑆 = (mPreSt‘𝑇) | |
7 | 6, 1 | msrf 33217 | . . . 4 ⊢ (mStRed‘𝑇):𝑆⟶𝑆 |
8 | 7 | fdmi 6557 | . . 3 ⊢ dom (mStRed‘𝑇) = 𝑆 |
9 | 5, 8 | sseqtri 3937 | . 2 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ 𝑆 |
10 | 4, 9 | eqsstri 3935 | 1 ⊢ 𝑈 ⊆ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ⊆ wss 3866 ◡ccnv 5550 dom cdm 5551 “ cima 5554 ‘cfv 6380 mPreStcmpst 33148 mStRedcmsr 33149 mPPStcmpps 33153 mThmcmthm 33154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-ot 4550 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-1st 7761 df-2nd 7762 df-mpst 33168 df-msr 33169 df-mthm 33174 |
This theorem is referenced by: mthmpps 33257 |
Copyright terms: Public domain | W3C validator |