| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmsta | Structured version Visualization version GIF version | ||
| Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mthmsta.u | ⊢ 𝑈 = (mThm‘𝑇) |
| mthmsta.s | ⊢ 𝑆 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| mthmsta | ⊢ 𝑈 ⊆ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
| 2 | eqid 2735 | . . 3 ⊢ (mPPSt‘𝑇) = (mPPSt‘𝑇) | |
| 3 | mthmsta.u | . . 3 ⊢ 𝑈 = (mThm‘𝑇) | |
| 4 | 1, 2, 3 | mthmval 35543 | . 2 ⊢ 𝑈 = (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) |
| 5 | cnvimass 6069 | . . 3 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ dom (mStRed‘𝑇) | |
| 6 | mthmsta.s | . . . . 5 ⊢ 𝑆 = (mPreSt‘𝑇) | |
| 7 | 6, 1 | msrf 35510 | . . . 4 ⊢ (mStRed‘𝑇):𝑆⟶𝑆 |
| 8 | 7 | fdmi 6716 | . . 3 ⊢ dom (mStRed‘𝑇) = 𝑆 |
| 9 | 5, 8 | sseqtri 4007 | . 2 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ 𝑆 |
| 10 | 4, 9 | eqsstri 4005 | 1 ⊢ 𝑈 ⊆ 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3926 ◡ccnv 5653 dom cdm 5654 “ cima 5657 ‘cfv 6530 mPreStcmpst 35441 mStRedcmsr 35442 mPPStcmpps 35446 mThmcmthm 35447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-1st 7986 df-2nd 7987 df-mpst 35461 df-msr 35462 df-mthm 35467 |
| This theorem is referenced by: mthmpps 35550 |
| Copyright terms: Public domain | W3C validator |