Step | Hyp | Ref
| Expression |
1 | | mthmb.r |
. . . . 5
β’ π
= (mStRedβπ) |
2 | | eqid 2731 |
. . . . 5
β’
(mPPStβπ) =
(mPPStβπ) |
3 | | mthmb.u |
. . . . 5
β’ π = (mThmβπ) |
4 | 1, 2, 3 | mthmval 34865 |
. . . 4
β’ π = (β‘π
β (π
β (mPPStβπ))) |
5 | 4 | eleq2i 2824 |
. . 3
β’ (π β π β π β (β‘π
β (π
β (mPPStβπ)))) |
6 | | eqid 2731 |
. . . . . 6
β’
(mPreStβπ) =
(mPreStβπ) |
7 | 6, 1 | msrf 34832 |
. . . . 5
β’ π
:(mPreStβπ)βΆ(mPreStβπ) |
8 | | ffn 6717 |
. . . . 5
β’ (π
:(mPreStβπ)βΆ(mPreStβπ) β π
Fn (mPreStβπ)) |
9 | 7, 8 | ax-mp 5 |
. . . 4
β’ π
Fn (mPreStβπ) |
10 | | elpreima 7059 |
. . . 4
β’ (π
Fn (mPreStβπ) β (π β (β‘π
β (π
β (mPPStβπ))) β (π β (mPreStβπ) β§ (π
βπ) β (π
β (mPPStβπ))))) |
11 | 9, 10 | ax-mp 5 |
. . 3
β’ (π β (β‘π
β (π
β (mPPStβπ))) β (π β (mPreStβπ) β§ (π
βπ) β (π
β (mPPStβπ)))) |
12 | 5, 11 | bitri 275 |
. 2
β’ (π β π β (π β (mPreStβπ) β§ (π
βπ) β (π
β (mPPStβπ)))) |
13 | | eleq1 2820 |
. . . 4
β’ ((π
βπ) = (π
βπ) β ((π
βπ) β (π
β (mPPStβπ)) β (π
βπ) β (π
β (mPPStβπ)))) |
14 | | ffun 6720 |
. . . . . . 7
β’ (π
:(mPreStβπ)βΆ(mPreStβπ) β Fun π
) |
15 | 7, 14 | ax-mp 5 |
. . . . . 6
β’ Fun π
|
16 | | fvelima 6957 |
. . . . . 6
β’ ((Fun
π
β§ (π
βπ) β (π
β (mPPStβπ))) β βπ₯ β (mPPStβπ)(π
βπ₯) = (π
βπ)) |
17 | 15, 16 | mpan 687 |
. . . . 5
β’ ((π
βπ) β (π
β (mPPStβπ)) β βπ₯ β (mPPStβπ)(π
βπ₯) = (π
βπ)) |
18 | 1, 2, 3 | mthmi 34867 |
. . . . . 6
β’ ((π₯ β (mPPStβπ) β§ (π
βπ₯) = (π
βπ)) β π β π) |
19 | 18 | rexlimiva 3146 |
. . . . 5
β’
(βπ₯ β
(mPPStβπ)(π
βπ₯) = (π
βπ) β π β π) |
20 | 17, 19 | syl 17 |
. . . 4
β’ ((π
βπ) β (π
β (mPPStβπ)) β π β π) |
21 | 13, 20 | syl6bi 253 |
. . 3
β’ ((π
βπ) = (π
βπ) β ((π
βπ) β (π
β (mPPStβπ)) β π β π)) |
22 | 21 | adantld 490 |
. 2
β’ ((π
βπ) = (π
βπ) β ((π β (mPreStβπ) β§ (π
βπ) β (π
β (mPPStβπ))) β π β π)) |
23 | 12, 22 | biimtrid 241 |
1
β’ ((π
βπ) = (π
βπ) β (π β π β π β π)) |