![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmblem | Structured version Visualization version GIF version |
Description: Lemma for mthmb 32081. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmb.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mthmb.u | ⊢ 𝑈 = (mThm‘𝑇) |
Ref | Expression |
---|---|
mthmblem | ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mthmb.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
2 | eqid 2778 | . . . . 5 ⊢ (mPPSt‘𝑇) = (mPPSt‘𝑇) | |
3 | mthmb.u | . . . . 5 ⊢ 𝑈 = (mThm‘𝑇) | |
4 | 1, 2, 3 | mthmval 32075 | . . . 4 ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇))) |
5 | 4 | eleq2i 2851 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇)))) |
6 | eqid 2778 | . . . . . 6 ⊢ (mPreSt‘𝑇) = (mPreSt‘𝑇) | |
7 | 6, 1 | msrf 32042 | . . . . 5 ⊢ 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) |
8 | ffn 6293 | . . . . 5 ⊢ (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇)) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ 𝑅 Fn (mPreSt‘𝑇) |
10 | elpreima 6602 | . . . 4 ⊢ (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇))) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))))) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑋 ∈ (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇))) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)))) |
12 | 5, 11 | bitri 267 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)))) |
13 | eleq1 2847 | . . . 4 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)) ↔ (𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)))) | |
14 | ffun 6296 | . . . . . . 7 ⊢ (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → Fun 𝑅) | |
15 | 7, 14 | ax-mp 5 | . . . . . 6 ⊢ Fun 𝑅 |
16 | fvelima 6510 | . . . . . 6 ⊢ ((Fun 𝑅 ∧ (𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇))) → ∃𝑥 ∈ (mPPSt‘𝑇)(𝑅‘𝑥) = (𝑅‘𝑌)) | |
17 | 15, 16 | mpan 680 | . . . . 5 ⊢ ((𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)) → ∃𝑥 ∈ (mPPSt‘𝑇)(𝑅‘𝑥) = (𝑅‘𝑌)) |
18 | 1, 2, 3 | mthmi 32077 | . . . . . 6 ⊢ ((𝑥 ∈ (mPPSt‘𝑇) ∧ (𝑅‘𝑥) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) |
19 | 18 | rexlimiva 3210 | . . . . 5 ⊢ (∃𝑥 ∈ (mPPSt‘𝑇)(𝑅‘𝑥) = (𝑅‘𝑌) → 𝑌 ∈ 𝑈) |
20 | 17, 19 | syl 17 | . . . 4 ⊢ ((𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)) → 𝑌 ∈ 𝑈) |
21 | 13, 20 | syl6bi 245 | . . 3 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)) → 𝑌 ∈ 𝑈)) |
22 | 21 | adantld 486 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))) → 𝑌 ∈ 𝑈)) |
23 | 12, 22 | syl5bi 234 | 1 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 ◡ccnv 5356 “ cima 5360 Fun wfun 6131 Fn wfn 6132 ⟶wf 6133 ‘cfv 6137 mPreStcmpst 31973 mStRedcmsr 31974 mPPStcmpps 31978 mThmcmthm 31979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-ot 4407 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-1st 7447 df-2nd 7448 df-mpst 31993 df-msr 31994 df-mpps 31998 df-mthm 31999 |
This theorem is referenced by: mthmb 32081 |
Copyright terms: Public domain | W3C validator |