| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmblem | Structured version Visualization version GIF version | ||
| Description: Lemma for mthmb 35553. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mthmb.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mthmb.u | ⊢ 𝑈 = (mThm‘𝑇) |
| Ref | Expression |
|---|---|
| mthmblem | ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mthmb.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (mPPSt‘𝑇) = (mPPSt‘𝑇) | |
| 3 | mthmb.u | . . . . 5 ⊢ 𝑈 = (mThm‘𝑇) | |
| 4 | 1, 2, 3 | mthmval 35547 | . . . 4 ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇))) |
| 5 | 4 | eleq2i 2820 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇)))) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (mPreSt‘𝑇) = (mPreSt‘𝑇) | |
| 7 | 6, 1 | msrf 35514 | . . . . 5 ⊢ 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) |
| 8 | ffn 6656 | . . . . 5 ⊢ (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇)) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ 𝑅 Fn (mPreSt‘𝑇) |
| 10 | elpreima 6996 | . . . 4 ⊢ (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇))) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))))) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑋 ∈ (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇))) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)))) |
| 12 | 5, 11 | bitri 275 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)))) |
| 13 | eleq1 2816 | . . . 4 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)) ↔ (𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)))) | |
| 14 | ffun 6659 | . . . . . . 7 ⊢ (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → Fun 𝑅) | |
| 15 | 7, 14 | ax-mp 5 | . . . . . 6 ⊢ Fun 𝑅 |
| 16 | fvelima 6892 | . . . . . 6 ⊢ ((Fun 𝑅 ∧ (𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇))) → ∃𝑥 ∈ (mPPSt‘𝑇)(𝑅‘𝑥) = (𝑅‘𝑌)) | |
| 17 | 15, 16 | mpan 690 | . . . . 5 ⊢ ((𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)) → ∃𝑥 ∈ (mPPSt‘𝑇)(𝑅‘𝑥) = (𝑅‘𝑌)) |
| 18 | 1, 2, 3 | mthmi 35549 | . . . . . 6 ⊢ ((𝑥 ∈ (mPPSt‘𝑇) ∧ (𝑅‘𝑥) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) |
| 19 | 18 | rexlimiva 3122 | . . . . 5 ⊢ (∃𝑥 ∈ (mPPSt‘𝑇)(𝑅‘𝑥) = (𝑅‘𝑌) → 𝑌 ∈ 𝑈) |
| 20 | 17, 19 | syl 17 | . . . 4 ⊢ ((𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)) → 𝑌 ∈ 𝑈) |
| 21 | 13, 20 | biimtrdi 253 | . . 3 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)) → 𝑌 ∈ 𝑈)) |
| 22 | 21 | adantld 490 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))) → 𝑌 ∈ 𝑈)) |
| 23 | 12, 22 | biimtrid 242 | 1 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ◡ccnv 5622 “ cima 5626 Fun wfun 6480 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 mPreStcmpst 35445 mStRedcmsr 35446 mPPStcmpps 35450 mThmcmthm 35451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-ot 4588 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-1st 7931 df-2nd 7932 df-mpst 35465 df-msr 35466 df-mpps 35470 df-mthm 35471 |
| This theorem is referenced by: mthmb 35553 |
| Copyright terms: Public domain | W3C validator |