Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmblem Structured version   Visualization version   GIF version

Theorem mthmblem 35565
Description: Lemma for mthmb 35566. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmb.r 𝑅 = (mStRed‘𝑇)
mthmb.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
mthmblem ((𝑅𝑋) = (𝑅𝑌) → (𝑋𝑈𝑌𝑈))

Proof of Theorem mthmblem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mthmb.r . . . . 5 𝑅 = (mStRed‘𝑇)
2 eqid 2735 . . . . 5 (mPPSt‘𝑇) = (mPPSt‘𝑇)
3 mthmb.u . . . . 5 𝑈 = (mThm‘𝑇)
41, 2, 3mthmval 35560 . . . 4 𝑈 = (𝑅 “ (𝑅 “ (mPPSt‘𝑇)))
54eleq2i 2831 . . 3 (𝑋𝑈𝑋 ∈ (𝑅 “ (𝑅 “ (mPPSt‘𝑇))))
6 eqid 2735 . . . . . 6 (mPreSt‘𝑇) = (mPreSt‘𝑇)
76, 1msrf 35527 . . . . 5 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇)
8 ffn 6737 . . . . 5 (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇))
97, 8ax-mp 5 . . . 4 𝑅 Fn (mPreSt‘𝑇)
10 elpreima 7078 . . . 4 (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ (𝑅 “ (𝑅 “ (mPPSt‘𝑇))) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)))))
119, 10ax-mp 5 . . 3 (𝑋 ∈ (𝑅 “ (𝑅 “ (mPPSt‘𝑇))) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))))
125, 11bitri 275 . 2 (𝑋𝑈 ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))))
13 eleq1 2827 . . . 4 ((𝑅𝑋) = (𝑅𝑌) → ((𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)) ↔ (𝑅𝑌) ∈ (𝑅 “ (mPPSt‘𝑇))))
14 ffun 6740 . . . . . . 7 (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → Fun 𝑅)
157, 14ax-mp 5 . . . . . 6 Fun 𝑅
16 fvelima 6974 . . . . . 6 ((Fun 𝑅 ∧ (𝑅𝑌) ∈ (𝑅 “ (mPPSt‘𝑇))) → ∃𝑥 ∈ (mPPSt‘𝑇)(𝑅𝑥) = (𝑅𝑌))
1715, 16mpan 690 . . . . 5 ((𝑅𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)) → ∃𝑥 ∈ (mPPSt‘𝑇)(𝑅𝑥) = (𝑅𝑌))
181, 2, 3mthmi 35562 . . . . . 6 ((𝑥 ∈ (mPPSt‘𝑇) ∧ (𝑅𝑥) = (𝑅𝑌)) → 𝑌𝑈)
1918rexlimiva 3145 . . . . 5 (∃𝑥 ∈ (mPPSt‘𝑇)(𝑅𝑥) = (𝑅𝑌) → 𝑌𝑈)
2017, 19syl 17 . . . 4 ((𝑅𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)) → 𝑌𝑈)
2113, 20biimtrdi 253 . . 3 ((𝑅𝑋) = (𝑅𝑌) → ((𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)) → 𝑌𝑈))
2221adantld 490 . 2 ((𝑅𝑋) = (𝑅𝑌) → ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))) → 𝑌𝑈))
2312, 22biimtrid 242 1 ((𝑅𝑋) = (𝑅𝑌) → (𝑋𝑈𝑌𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  ccnv 5688  cima 5692  Fun wfun 6557   Fn wfn 6558  wf 6559  cfv 6563  mPreStcmpst 35458  mStRedcmsr 35459  mPPStcmpps 35463  mThmcmthm 35464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-ot 4640  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-1st 8013  df-2nd 8014  df-mpst 35478  df-msr 35479  df-mpps 35483  df-mthm 35484
This theorem is referenced by:  mthmb  35566
  Copyright terms: Public domain W3C validator