Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmblem | Structured version Visualization version GIF version |
Description: Lemma for mthmb 33543. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmb.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mthmb.u | ⊢ 𝑈 = (mThm‘𝑇) |
Ref | Expression |
---|---|
mthmblem | ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mthmb.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
2 | eqid 2738 | . . . . 5 ⊢ (mPPSt‘𝑇) = (mPPSt‘𝑇) | |
3 | mthmb.u | . . . . 5 ⊢ 𝑈 = (mThm‘𝑇) | |
4 | 1, 2, 3 | mthmval 33537 | . . . 4 ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇))) |
5 | 4 | eleq2i 2830 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇)))) |
6 | eqid 2738 | . . . . . 6 ⊢ (mPreSt‘𝑇) = (mPreSt‘𝑇) | |
7 | 6, 1 | msrf 33504 | . . . . 5 ⊢ 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) |
8 | ffn 6600 | . . . . 5 ⊢ (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇)) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ 𝑅 Fn (mPreSt‘𝑇) |
10 | elpreima 6935 | . . . 4 ⊢ (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇))) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))))) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑋 ∈ (◡𝑅 “ (𝑅 “ (mPPSt‘𝑇))) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)))) |
12 | 5, 11 | bitri 274 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)))) |
13 | eleq1 2826 | . . . 4 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)) ↔ (𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)))) | |
14 | ffun 6603 | . . . . . . 7 ⊢ (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → Fun 𝑅) | |
15 | 7, 14 | ax-mp 5 | . . . . . 6 ⊢ Fun 𝑅 |
16 | fvelima 6835 | . . . . . 6 ⊢ ((Fun 𝑅 ∧ (𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇))) → ∃𝑥 ∈ (mPPSt‘𝑇)(𝑅‘𝑥) = (𝑅‘𝑌)) | |
17 | 15, 16 | mpan 687 | . . . . 5 ⊢ ((𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)) → ∃𝑥 ∈ (mPPSt‘𝑇)(𝑅‘𝑥) = (𝑅‘𝑌)) |
18 | 1, 2, 3 | mthmi 33539 | . . . . . 6 ⊢ ((𝑥 ∈ (mPPSt‘𝑇) ∧ (𝑅‘𝑥) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) |
19 | 18 | rexlimiva 3210 | . . . . 5 ⊢ (∃𝑥 ∈ (mPPSt‘𝑇)(𝑅‘𝑥) = (𝑅‘𝑌) → 𝑌 ∈ 𝑈) |
20 | 17, 19 | syl 17 | . . . 4 ⊢ ((𝑅‘𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)) → 𝑌 ∈ 𝑈) |
21 | 13, 20 | syl6bi 252 | . . 3 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)) → 𝑌 ∈ 𝑈)) |
22 | 21 | adantld 491 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))) → 𝑌 ∈ 𝑈)) |
23 | 12, 22 | syl5bi 241 | 1 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ◡ccnv 5588 “ cima 5592 Fun wfun 6427 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 mPreStcmpst 33435 mStRedcmsr 33436 mPPStcmpps 33440 mThmcmthm 33441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-ot 4570 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-1st 7831 df-2nd 7832 df-mpst 33455 df-msr 33456 df-mpps 33460 df-mthm 33461 |
This theorem is referenced by: mthmb 33543 |
Copyright terms: Public domain | W3C validator |