Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmblem Structured version   Visualization version   GIF version

Theorem mthmblem 35567
Description: Lemma for mthmb 35568. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmb.r 𝑅 = (mStRed‘𝑇)
mthmb.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
mthmblem ((𝑅𝑋) = (𝑅𝑌) → (𝑋𝑈𝑌𝑈))

Proof of Theorem mthmblem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mthmb.r . . . . 5 𝑅 = (mStRed‘𝑇)
2 eqid 2729 . . . . 5 (mPPSt‘𝑇) = (mPPSt‘𝑇)
3 mthmb.u . . . . 5 𝑈 = (mThm‘𝑇)
41, 2, 3mthmval 35562 . . . 4 𝑈 = (𝑅 “ (𝑅 “ (mPPSt‘𝑇)))
54eleq2i 2820 . . 3 (𝑋𝑈𝑋 ∈ (𝑅 “ (𝑅 “ (mPPSt‘𝑇))))
6 eqid 2729 . . . . . 6 (mPreSt‘𝑇) = (mPreSt‘𝑇)
76, 1msrf 35529 . . . . 5 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇)
8 ffn 6688 . . . . 5 (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇))
97, 8ax-mp 5 . . . 4 𝑅 Fn (mPreSt‘𝑇)
10 elpreima 7030 . . . 4 (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ (𝑅 “ (𝑅 “ (mPPSt‘𝑇))) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)))))
119, 10ax-mp 5 . . 3 (𝑋 ∈ (𝑅 “ (𝑅 “ (mPPSt‘𝑇))) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))))
125, 11bitri 275 . 2 (𝑋𝑈 ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))))
13 eleq1 2816 . . . 4 ((𝑅𝑋) = (𝑅𝑌) → ((𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)) ↔ (𝑅𝑌) ∈ (𝑅 “ (mPPSt‘𝑇))))
14 ffun 6691 . . . . . . 7 (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → Fun 𝑅)
157, 14ax-mp 5 . . . . . 6 Fun 𝑅
16 fvelima 6926 . . . . . 6 ((Fun 𝑅 ∧ (𝑅𝑌) ∈ (𝑅 “ (mPPSt‘𝑇))) → ∃𝑥 ∈ (mPPSt‘𝑇)(𝑅𝑥) = (𝑅𝑌))
1715, 16mpan 690 . . . . 5 ((𝑅𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)) → ∃𝑥 ∈ (mPPSt‘𝑇)(𝑅𝑥) = (𝑅𝑌))
181, 2, 3mthmi 35564 . . . . . 6 ((𝑥 ∈ (mPPSt‘𝑇) ∧ (𝑅𝑥) = (𝑅𝑌)) → 𝑌𝑈)
1918rexlimiva 3126 . . . . 5 (∃𝑥 ∈ (mPPSt‘𝑇)(𝑅𝑥) = (𝑅𝑌) → 𝑌𝑈)
2017, 19syl 17 . . . 4 ((𝑅𝑌) ∈ (𝑅 “ (mPPSt‘𝑇)) → 𝑌𝑈)
2113, 20biimtrdi 253 . . 3 ((𝑅𝑋) = (𝑅𝑌) → ((𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇)) → 𝑌𝑈))
2221adantld 490 . 2 ((𝑅𝑋) = (𝑅𝑌) → ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅 “ (mPPSt‘𝑇))) → 𝑌𝑈))
2312, 22biimtrid 242 1 ((𝑅𝑋) = (𝑅𝑌) → (𝑋𝑈𝑌𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  ccnv 5637  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  mPreStcmpst 35460  mStRedcmsr 35461  mPPStcmpps 35465  mThmcmthm 35466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-1st 7968  df-2nd 7969  df-mpst 35480  df-msr 35481  df-mpps 35485  df-mthm 35486
This theorem is referenced by:  mthmb  35568
  Copyright terms: Public domain W3C validator