![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmi | Structured version Visualization version GIF version |
Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmval.r | β’ π = (mStRedβπ) |
mthmval.j | β’ π½ = (mPPStβπ) |
mthmval.u | β’ π = (mThmβπ) |
Ref | Expression |
---|---|
mthmi | β’ ((π β π½ β§ (π βπ) = (π βπ)) β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6900 | . . 3 β’ (π₯ = π β ((π βπ₯) = (π βπ) β (π βπ) = (π βπ))) | |
2 | 1 | rspcev 3612 | . 2 β’ ((π β π½ β§ (π βπ) = (π βπ)) β βπ₯ β π½ (π βπ₯) = (π βπ)) |
3 | mthmval.r | . . 3 β’ π = (mStRedβπ) | |
4 | mthmval.j | . . 3 β’ π½ = (mPPStβπ) | |
5 | mthmval.u | . . 3 β’ π = (mThmβπ) | |
6 | 3, 4, 5 | elmthm 35031 | . 2 β’ (π β π β βπ₯ β π½ (π βπ₯) = (π βπ)) |
7 | 2, 6 | sylibr 233 | 1 β’ ((π β π½ β§ (π βπ) = (π βπ)) β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwrex 3069 βcfv 6543 mStRedcmsr 34929 mPPStcmpps 34933 mThmcmthm 34934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-1st 7979 df-2nd 7980 df-mpst 34948 df-msr 34949 df-mpps 34953 df-mthm 34954 |
This theorem is referenced by: mppsthm 35034 mthmblem 35035 mthmpps 35037 |
Copyright terms: Public domain | W3C validator |