Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmi Structured version   Visualization version   GIF version

Theorem mthmi 35545
Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmval.r 𝑅 = (mStRed‘𝑇)
mthmval.j 𝐽 = (mPPSt‘𝑇)
mthmval.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
mthmi ((𝑋𝐽 ∧ (𝑅𝑋) = (𝑅𝑌)) → 𝑌𝑈)

Proof of Theorem mthmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6884 . . 3 (𝑥 = 𝑋 → ((𝑅𝑥) = (𝑅𝑌) ↔ (𝑅𝑋) = (𝑅𝑌)))
21rspcev 3601 . 2 ((𝑋𝐽 ∧ (𝑅𝑋) = (𝑅𝑌)) → ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑌))
3 mthmval.r . . 3 𝑅 = (mStRed‘𝑇)
4 mthmval.j . . 3 𝐽 = (mPPSt‘𝑇)
5 mthmval.u . . 3 𝑈 = (mThm‘𝑇)
63, 4, 5elmthm 35544 . 2 (𝑌𝑈 ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑌))
72, 6sylibr 234 1 ((𝑋𝐽 ∧ (𝑅𝑋) = (𝑅𝑌)) → 𝑌𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060  cfv 6530  mStRedcmsr 35442  mPPStcmpps 35446  mThmcmthm 35447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-1st 7986  df-2nd 7987  df-mpst 35461  df-msr 35462  df-mpps 35466  df-mthm 35467
This theorem is referenced by:  mppsthm  35547  mthmblem  35548  mthmpps  35550
  Copyright terms: Public domain W3C validator