| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmi | Structured version Visualization version GIF version | ||
| Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mthmval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mthmval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
| mthmval.u | ⊢ 𝑈 = (mThm‘𝑇) |
| Ref | Expression |
|---|---|
| mthmi | ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6870 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑅‘𝑥) = (𝑅‘𝑌) ↔ (𝑅‘𝑋) = (𝑅‘𝑌))) | |
| 2 | 1 | rspcev 3591 | . 2 ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑌)) |
| 3 | mthmval.r | . . 3 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 4 | mthmval.j | . . 3 ⊢ 𝐽 = (mPPSt‘𝑇) | |
| 5 | mthmval.u | . . 3 ⊢ 𝑈 = (mThm‘𝑇) | |
| 6 | 3, 4, 5 | elmthm 35570 | . 2 ⊢ (𝑌 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑌)) |
| 7 | 2, 6 | sylibr 234 | 1 ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ‘cfv 6514 mStRedcmsr 35468 mPPStcmpps 35472 mThmcmthm 35473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-ot 4601 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-1st 7971 df-2nd 7972 df-mpst 35487 df-msr 35488 df-mpps 35492 df-mthm 35493 |
| This theorem is referenced by: mppsthm 35573 mthmblem 35574 mthmpps 35576 |
| Copyright terms: Public domain | W3C validator |