Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmi | Structured version Visualization version GIF version |
Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mthmval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
mthmval.u | ⊢ 𝑈 = (mThm‘𝑇) |
Ref | Expression |
---|---|
mthmi | ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6765 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑅‘𝑥) = (𝑅‘𝑌) ↔ (𝑅‘𝑋) = (𝑅‘𝑌))) | |
2 | 1 | rspcev 3552 | . 2 ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑌)) |
3 | mthmval.r | . . 3 ⊢ 𝑅 = (mStRed‘𝑇) | |
4 | mthmval.j | . . 3 ⊢ 𝐽 = (mPPSt‘𝑇) | |
5 | mthmval.u | . . 3 ⊢ 𝑈 = (mThm‘𝑇) | |
6 | 3, 4, 5 | elmthm 33438 | . 2 ⊢ (𝑌 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑌)) |
7 | 2, 6 | sylibr 233 | 1 ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ‘cfv 6418 mStRedcmsr 33336 mPPStcmpps 33340 mThmcmthm 33341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-1st 7804 df-2nd 7805 df-mpst 33355 df-msr 33356 df-mpps 33360 df-mthm 33361 |
This theorem is referenced by: mppsthm 33441 mthmblem 33442 mthmpps 33444 |
Copyright terms: Public domain | W3C validator |