| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmi | Structured version Visualization version GIF version | ||
| Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mthmval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mthmval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
| mthmval.u | ⊢ 𝑈 = (mThm‘𝑇) |
| Ref | Expression |
|---|---|
| mthmi | ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6867 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑅‘𝑥) = (𝑅‘𝑌) ↔ (𝑅‘𝑋) = (𝑅‘𝑌))) | |
| 2 | 1 | rspcev 3588 | . 2 ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑌)) |
| 3 | mthmval.r | . . 3 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 4 | mthmval.j | . . 3 ⊢ 𝐽 = (mPPSt‘𝑇) | |
| 5 | mthmval.u | . . 3 ⊢ 𝑈 = (mThm‘𝑇) | |
| 6 | 3, 4, 5 | elmthm 35563 | . 2 ⊢ (𝑌 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑌)) |
| 7 | 2, 6 | sylibr 234 | 1 ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ‘cfv 6511 mStRedcmsr 35461 mPPStcmpps 35465 mThmcmthm 35466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-1st 7968 df-2nd 7969 df-mpst 35480 df-msr 35481 df-mpps 35485 df-mthm 35486 |
| This theorem is referenced by: mppsthm 35566 mthmblem 35567 mthmpps 35569 |
| Copyright terms: Public domain | W3C validator |