Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmi Structured version   Visualization version   GIF version

Theorem mthmi 35564
Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmval.r 𝑅 = (mStRed‘𝑇)
mthmval.j 𝐽 = (mPPSt‘𝑇)
mthmval.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
mthmi ((𝑋𝐽 ∧ (𝑅𝑋) = (𝑅𝑌)) → 𝑌𝑈)

Proof of Theorem mthmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6867 . . 3 (𝑥 = 𝑋 → ((𝑅𝑥) = (𝑅𝑌) ↔ (𝑅𝑋) = (𝑅𝑌)))
21rspcev 3588 . 2 ((𝑋𝐽 ∧ (𝑅𝑋) = (𝑅𝑌)) → ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑌))
3 mthmval.r . . 3 𝑅 = (mStRed‘𝑇)
4 mthmval.j . . 3 𝐽 = (mPPSt‘𝑇)
5 mthmval.u . . 3 𝑈 = (mThm‘𝑇)
63, 4, 5elmthm 35563 . 2 (𝑌𝑈 ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑌))
72, 6sylibr 234 1 ((𝑋𝐽 ∧ (𝑅𝑋) = (𝑅𝑌)) → 𝑌𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cfv 6511  mStRedcmsr 35461  mPPStcmpps 35465  mThmcmthm 35466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-1st 7968  df-2nd 7969  df-mpst 35480  df-msr 35481  df-mpps 35485  df-mthm 35486
This theorem is referenced by:  mppsthm  35566  mthmblem  35567  mthmpps  35569
  Copyright terms: Public domain W3C validator