MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrccl Structured version   Visualization version   GIF version

Theorem mrccl 17114
Description: The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrccl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)

Proof of Theorem mrccl
StepHypRef Expression
1 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrcf 17112 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
32adantr 484 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝐹:𝒫 𝑋𝐶)
4 mre1cl 17097 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
5 elpw2g 5237 . . . 4 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
64, 5syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
76biimpar 481 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
83, 7ffvelrnd 6905 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wss 3866  𝒫 cpw 4513  wf 6376  cfv 6380  Moorecmre 17085  mrClscmrc 17086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-int 4860  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-mre 17089  df-mrc 17090
This theorem is referenced by:  mrcsncl  17115  mrcidb  17118  mrcidm  17122  submrc  17131  isacs2  17156  mrelatlub  18068  mreclatBAD  18069  gsumwspan  18273  cycsubg2cl  18618  symggen  18862  odf1o1  18961  cntzspan  19229  gsumzsplit  19312  gsumzoppg  19329  gsumpt  19347  dmdprdd  19386  dprdfeq0  19409  dprdspan  19414  dprdres  19415  dprdz  19417  subgdmdprd  19421  subgdprd  19422  dprd2dlem1  19428  dprd2da  19429  dmdprdsplit2lem  19432  mrccss  20656  ismrcd2  40224  proot1mul  40727  mrelatlubALT  45954  mreclat  45956
  Copyright terms: Public domain W3C validator