| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrccl | Structured version Visualization version GIF version | ||
| Description: The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrccl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 2 | 1 | mrcf 17512 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
| 4 | mre1cl 17493 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 5 | elpw2g 5271 | . . . 4 ⊢ (𝑋 ∈ 𝐶 → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) |
| 7 | 6 | biimpar 477 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ∈ 𝒫 𝑋) |
| 8 | 3, 7 | ffvelcdmd 7018 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 𝒫 cpw 4550 ⟶wf 6477 ‘cfv 6481 Moorecmre 17481 mrClscmrc 17482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-mre 17485 df-mrc 17486 |
| This theorem is referenced by: mrcsncl 17515 mrcidb 17518 mrcidm 17522 submrc 17531 isacs2 17556 mrelatlub 18465 mreclatBAD 18466 gsumwspan 18751 cycsubg2cl 19121 symggen 19380 odf1o1 19482 cntzspan 19754 gsumzsplit 19837 gsumzoppg 19854 gsumpt 19872 dmdprdd 19911 dprdfeq0 19934 dprdspan 19939 dprdres 19940 dprdz 19942 subgdmdprd 19946 subgdprd 19947 dprd2dlem1 19953 dprd2da 19954 dmdprdsplit2lem 19957 mrccss 21629 ismrcd2 42731 proot1mul 43226 mrelatlubALT 49025 mreclat 49027 |
| Copyright terms: Public domain | W3C validator |