MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrccl Structured version   Visualization version   GIF version

Theorem mrccl 17572
Description: The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrccl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)

Proof of Theorem mrccl
StepHypRef Expression
1 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrcf 17570 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
32adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝐹:𝒫 𝑋𝐶)
4 mre1cl 17555 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
5 elpw2g 5288 . . . 4 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
64, 5syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
76biimpar 477 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
83, 7ffvelcdmd 7057 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914  𝒫 cpw 4563  wf 6507  cfv 6511  Moorecmre 17543  mrClscmrc 17544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-mre 17547  df-mrc 17548
This theorem is referenced by:  mrcsncl  17573  mrcidb  17576  mrcidm  17580  submrc  17589  isacs2  17614  mrelatlub  18521  mreclatBAD  18522  gsumwspan  18773  cycsubg2cl  19143  symggen  19400  odf1o1  19502  cntzspan  19774  gsumzsplit  19857  gsumzoppg  19874  gsumpt  19892  dmdprdd  19931  dprdfeq0  19954  dprdspan  19959  dprdres  19960  dprdz  19962  subgdmdprd  19966  subgdprd  19967  dprd2dlem1  19973  dprd2da  19974  dmdprdsplit2lem  19977  mrccss  21603  ismrcd2  42687  proot1mul  43183  mrelatlubALT  48983  mreclat  48985
  Copyright terms: Public domain W3C validator