MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrccl Structured version   Visualization version   GIF version

Theorem mrccl 17562
Description: The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrccl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)

Proof of Theorem mrccl
StepHypRef Expression
1 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrcf 17560 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
32adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝐹:𝒫 𝑋𝐶)
4 mre1cl 17545 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
5 elpw2g 5344 . . . 4 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
64, 5syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
76biimpar 477 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
83, 7ffvelcdmd 7087 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wss 3948  𝒫 cpw 4602  wf 6539  cfv 6543  Moorecmre 17533  mrClscmrc 17534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-mre 17537  df-mrc 17538
This theorem is referenced by:  mrcsncl  17563  mrcidb  17566  mrcidm  17570  submrc  17579  isacs2  17604  mrelatlub  18525  mreclatBAD  18526  gsumwspan  18769  cycsubg2cl  19133  symggen  19386  odf1o1  19488  cntzspan  19760  gsumzsplit  19843  gsumzoppg  19860  gsumpt  19878  dmdprdd  19917  dprdfeq0  19940  dprdspan  19945  dprdres  19946  dprdz  19948  subgdmdprd  19952  subgdprd  19953  dprd2dlem1  19959  dprd2da  19960  dmdprdsplit2lem  19963  mrccss  21557  ismrcd2  41900  proot1mul  42404  mrelatlubALT  47782  mreclat  47784
  Copyright terms: Public domain W3C validator