| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcval | Structured version Visualization version GIF version | ||
| Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
| Ref | Expression |
|---|---|
| mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrcval | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 2 | 1 | mrcfval 17532 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) |
| 4 | sseq1 3963 | . . . . 5 ⊢ (𝑥 = 𝑈 → (𝑥 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑠)) | |
| 5 | 4 | rabbidv 3404 | . . . 4 ⊢ (𝑥 = 𝑈 → {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
| 6 | 5 | inteqd 4904 | . . 3 ⊢ (𝑥 = 𝑈 → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
| 7 | 6 | adantl 481 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) ∧ 𝑥 = 𝑈) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
| 8 | mre1cl 17514 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 9 | elpw2g 5275 | . . . 4 ⊢ (𝑋 ∈ 𝐶 → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) |
| 11 | 10 | biimpar 477 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ∈ 𝒫 𝑋) |
| 12 | sseq2 3964 | . . . . 5 ⊢ (𝑠 = 𝑋 → (𝑈 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑋)) | |
| 13 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑋 ∈ 𝐶) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) | |
| 15 | 12, 13, 14 | elrabd 3652 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑋 ∈ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
| 16 | 15 | ne0d 4295 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ≠ ∅) |
| 17 | intex 5286 | . . 3 ⊢ ({𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ∈ V) | |
| 18 | 16, 17 | sylib 218 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ∈ V) |
| 19 | 3, 7, 11, 18 | fvmptd 6941 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3396 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 ∩ cint 4899 ↦ cmpt 5176 ‘cfv 6486 Moorecmre 17502 mrClscmrc 17503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-mre 17506 df-mrc 17507 |
| This theorem is referenced by: mrcid 17537 mrcss 17540 mrcssid 17541 cycsubg2 19107 aspval2 21823 mrelatlubALT 48967 mreclat 48969 |
| Copyright terms: Public domain | W3C validator |