MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcval Structured version   Visualization version   GIF version

Theorem mrcval 16984
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcval ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
Distinct variable groups:   𝐹,𝑠   𝐶,𝑠   𝑋,𝑠   𝑈,𝑠

Proof of Theorem mrcval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrcfval 16982 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
32adantr 484 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
4 sseq1 3902 . . . . 5 (𝑥 = 𝑈 → (𝑥𝑠𝑈𝑠))
54rabbidv 3381 . . . 4 (𝑥 = 𝑈 → {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
65inteqd 4841 . . 3 (𝑥 = 𝑈 {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
76adantl 485 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) ∧ 𝑥 = 𝑈) → {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
8 mre1cl 16968 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
9 elpw2g 5212 . . . 4 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
108, 9syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
1110biimpar 481 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
12 sseq2 3903 . . . . 5 (𝑠 = 𝑋 → (𝑈𝑠𝑈𝑋))
138adantr 484 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑋𝐶)
14 simpr 488 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈𝑋)
1512, 13, 14elrabd 3590 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑋 ∈ {𝑠𝐶𝑈𝑠})
1615ne0d 4224 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → {𝑠𝐶𝑈𝑠} ≠ ∅)
17 intex 5205 . . 3 ({𝑠𝐶𝑈𝑠} ≠ ∅ ↔ {𝑠𝐶𝑈𝑠} ∈ V)
1816, 17sylib 221 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → {𝑠𝐶𝑈𝑠} ∈ V)
193, 7, 11, 18fvmptd 6782 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2934  {crab 3057  Vcvv 3398  wss 3843  c0 4211  𝒫 cpw 4488   cint 4836  cmpt 5110  cfv 6339  Moorecmre 16956  mrClscmrc 16957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-int 4837  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-mre 16960  df-mrc 16961
This theorem is referenced by:  mrcid  16987  mrcss  16990  mrcssid  16991  cycsubg2  18471  aspval2  20712
  Copyright terms: Public domain W3C validator