Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrcval | Structured version Visualization version GIF version |
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcval | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | mrcfval 17317 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) |
3 | 2 | adantr 481 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) |
4 | sseq1 3946 | . . . . 5 ⊢ (𝑥 = 𝑈 → (𝑥 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑠)) | |
5 | 4 | rabbidv 3414 | . . . 4 ⊢ (𝑥 = 𝑈 → {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
6 | 5 | inteqd 4884 | . . 3 ⊢ (𝑥 = 𝑈 → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
7 | 6 | adantl 482 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) ∧ 𝑥 = 𝑈) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
8 | mre1cl 17303 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
9 | elpw2g 5268 | . . . 4 ⊢ (𝑋 ∈ 𝐶 → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) |
11 | 10 | biimpar 478 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ∈ 𝒫 𝑋) |
12 | sseq2 3947 | . . . . 5 ⊢ (𝑠 = 𝑋 → (𝑈 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑋)) | |
13 | 8 | adantr 481 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑋 ∈ 𝐶) |
14 | simpr 485 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) | |
15 | 12, 13, 14 | elrabd 3626 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑋 ∈ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
16 | 15 | ne0d 4269 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ≠ ∅) |
17 | intex 5261 | . . 3 ⊢ ({𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ∈ V) | |
18 | 16, 17 | sylib 217 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ∈ V) |
19 | 3, 7, 11, 18 | fvmptd 6882 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∩ cint 4879 ↦ cmpt 5157 ‘cfv 6433 Moorecmre 17291 mrClscmrc 17292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-mre 17295 df-mrc 17296 |
This theorem is referenced by: mrcid 17322 mrcss 17325 mrcssid 17326 cycsubg2 18829 aspval2 21102 mrelatlubALT 46281 mreclat 46283 |
Copyright terms: Public domain | W3C validator |