MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcval Structured version   Visualization version   GIF version

Theorem mrcval 17526
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcval ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
Distinct variable groups:   𝐹,𝑠   𝐶,𝑠   𝑋,𝑠   𝑈,𝑠

Proof of Theorem mrcval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrcfval 17524 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
32adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
4 sseq1 3957 . . . . 5 (𝑥 = 𝑈 → (𝑥𝑠𝑈𝑠))
54rabbidv 3404 . . . 4 (𝑥 = 𝑈 → {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
65inteqd 4904 . . 3 (𝑥 = 𝑈 {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
76adantl 481 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) ∧ 𝑥 = 𝑈) → {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
8 mre1cl 17506 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
9 elpw2g 5275 . . . 4 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
108, 9syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
1110biimpar 477 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
12 sseq2 3958 . . . . 5 (𝑠 = 𝑋 → (𝑈𝑠𝑈𝑋))
138adantr 480 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑋𝐶)
14 simpr 484 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈𝑋)
1512, 13, 14elrabd 3646 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑋 ∈ {𝑠𝐶𝑈𝑠})
1615ne0d 4293 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → {𝑠𝐶𝑈𝑠} ≠ ∅)
17 intex 5286 . . 3 ({𝑠𝐶𝑈𝑠} ≠ ∅ ↔ {𝑠𝐶𝑈𝑠} ∈ V)
1816, 17sylib 218 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → {𝑠𝐶𝑈𝑠} ∈ V)
193, 7, 11, 18fvmptd 6945 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2930  {crab 3397  Vcvv 3438  wss 3899  c0 4284  𝒫 cpw 4551   cint 4899  cmpt 5176  cfv 6489  Moorecmre 17494  mrClscmrc 17495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-mre 17498  df-mrc 17499
This theorem is referenced by:  mrcid  17529  mrcss  17532  mrcssid  17533  cycsubg2  19132  aspval2  21845  mrelatlubALT  49109  mreclat  49111
  Copyright terms: Public domain W3C validator