MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcval Structured version   Visualization version   GIF version

Theorem mrcval 17236
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcval ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
Distinct variable groups:   𝐹,𝑠   𝐶,𝑠   𝑋,𝑠   𝑈,𝑠

Proof of Theorem mrcval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrcfval 17234 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
32adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
4 sseq1 3942 . . . . 5 (𝑥 = 𝑈 → (𝑥𝑠𝑈𝑠))
54rabbidv 3404 . . . 4 (𝑥 = 𝑈 → {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
65inteqd 4881 . . 3 (𝑥 = 𝑈 {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
76adantl 481 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) ∧ 𝑥 = 𝑈) → {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
8 mre1cl 17220 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
9 elpw2g 5263 . . . 4 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
108, 9syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
1110biimpar 477 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
12 sseq2 3943 . . . . 5 (𝑠 = 𝑋 → (𝑈𝑠𝑈𝑋))
138adantr 480 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑋𝐶)
14 simpr 484 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈𝑋)
1512, 13, 14elrabd 3619 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑋 ∈ {𝑠𝐶𝑈𝑠})
1615ne0d 4266 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → {𝑠𝐶𝑈𝑠} ≠ ∅)
17 intex 5256 . . 3 ({𝑠𝐶𝑈𝑠} ≠ ∅ ↔ {𝑠𝐶𝑈𝑠} ∈ V)
1816, 17sylib 217 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → {𝑠𝐶𝑈𝑠} ∈ V)
193, 7, 11, 18fvmptd 6864 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530   cint 4876  cmpt 5153  cfv 6418  Moorecmre 17208  mrClscmrc 17209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-mre 17212  df-mrc 17213
This theorem is referenced by:  mrcid  17239  mrcss  17242  mrcssid  17243  cycsubg2  18744  aspval2  21012  mrelatlubALT  46169  mreclat  46171
  Copyright terms: Public domain W3C validator