Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrcval | Structured version Visualization version GIF version |
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcval | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | mrcfval 17234 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) |
3 | 2 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) |
4 | sseq1 3942 | . . . . 5 ⊢ (𝑥 = 𝑈 → (𝑥 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑠)) | |
5 | 4 | rabbidv 3404 | . . . 4 ⊢ (𝑥 = 𝑈 → {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
6 | 5 | inteqd 4881 | . . 3 ⊢ (𝑥 = 𝑈 → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
7 | 6 | adantl 481 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) ∧ 𝑥 = 𝑈) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
8 | mre1cl 17220 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
9 | elpw2g 5263 | . . . 4 ⊢ (𝑋 ∈ 𝐶 → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) |
11 | 10 | biimpar 477 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ∈ 𝒫 𝑋) |
12 | sseq2 3943 | . . . . 5 ⊢ (𝑠 = 𝑋 → (𝑈 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑋)) | |
13 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑋 ∈ 𝐶) |
14 | simpr 484 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) | |
15 | 12, 13, 14 | elrabd 3619 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑋 ∈ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
16 | 15 | ne0d 4266 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ≠ ∅) |
17 | intex 5256 | . . 3 ⊢ ({𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ∈ V) | |
18 | 16, 17 | sylib 217 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ∈ V) |
19 | 3, 7, 11, 18 | fvmptd 6864 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ∩ cint 4876 ↦ cmpt 5153 ‘cfv 6418 Moorecmre 17208 mrClscmrc 17209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-mre 17212 df-mrc 17213 |
This theorem is referenced by: mrcid 17239 mrcss 17242 mrcssid 17243 cycsubg2 18744 aspval2 21012 mrelatlubALT 46169 mreclat 46171 |
Copyright terms: Public domain | W3C validator |