![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcval | Structured version Visualization version GIF version |
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcval | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | mrcfval 16621 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) |
3 | 2 | adantr 474 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) |
4 | sseq1 3851 | . . . . 5 ⊢ (𝑥 = 𝑈 → (𝑥 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑠)) | |
5 | 4 | rabbidv 3402 | . . . 4 ⊢ (𝑥 = 𝑈 → {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
6 | 5 | inteqd 4702 | . . 3 ⊢ (𝑥 = 𝑈 → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
7 | 6 | adantl 475 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) ∧ 𝑥 = 𝑈) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
8 | mre1cl 16607 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
9 | elpw2g 5049 | . . . 4 ⊢ (𝑋 ∈ 𝐶 → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) |
11 | 10 | biimpar 471 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ∈ 𝒫 𝑋) |
12 | 8 | adantr 474 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑋 ∈ 𝐶) |
13 | simpr 479 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) | |
14 | sseq2 3852 | . . . . . 6 ⊢ (𝑠 = 𝑋 → (𝑈 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑋)) | |
15 | 14 | elrab 3585 | . . . . 5 ⊢ (𝑋 ∈ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ↔ (𝑋 ∈ 𝐶 ∧ 𝑈 ⊆ 𝑋)) |
16 | 12, 13, 15 | sylanbrc 580 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑋 ∈ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
17 | 16 | ne0d 4151 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ≠ ∅) |
18 | intex 5042 | . . 3 ⊢ ({𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ∈ V) | |
19 | 17, 18 | sylib 210 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ∈ V) |
20 | 3, 7, 11, 19 | fvmptd 6535 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 {crab 3121 Vcvv 3414 ⊆ wss 3798 ∅c0 4144 𝒫 cpw 4378 ∩ cint 4697 ↦ cmpt 4952 ‘cfv 6123 Moorecmre 16595 mrClscmrc 16596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-int 4698 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-fv 6131 df-mre 16599 df-mrc 16600 |
This theorem is referenced by: mrcid 16626 mrcss 16629 mrcssid 16630 cycsubg2 17982 aspval2 19708 |
Copyright terms: Public domain | W3C validator |