Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mvmulfv | Structured version Visualization version GIF version |
Description: A cell/element in the vector resulting from a multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019.) |
Ref | Expression |
---|---|
mvmulfval.x | ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) |
mvmulfval.b | ⊢ 𝐵 = (Base‘𝑅) |
mvmulfval.t | ⊢ · = (.r‘𝑅) |
mvmulfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
mvmulfval.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
mvmulfval.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mvmulval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
mvmulval.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
mvmulfv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑀) |
Ref | Expression |
---|---|
mvmulfv | ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvmulfval.x | . . 3 ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) | |
2 | mvmulfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | mvmulfval.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | mvmulfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | mvmulfval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
6 | mvmulfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | mvmulval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
8 | mvmulval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mvmulval 21306 | . 2 ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
10 | oveq1 7189 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) | |
11 | 10 | adantl 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) |
12 | 11 | oveq1d 7197 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) = ((𝐼𝑋𝑗) · (𝑌‘𝑗))) |
13 | 12 | mpteq2dv 5136 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗)))) |
14 | 13 | oveq2d 7198 | . 2 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
15 | mvmulfv.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑀) | |
16 | ovexd 7217 | . 2 ⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗)))) ∈ V) | |
17 | 9, 14, 15, 16 | fvmptd 6794 | 1 ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3400 〈cop 4532 ↦ cmpt 5120 × cxp 5533 ‘cfv 6349 (class class class)co 7182 ↑m cmap 8449 Fincfn 8567 Basecbs 16598 .rcmulr 16681 Σg cgsu 16829 maVecMul cmvmul 21303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-ov 7185 df-oprab 7186 df-mpo 7187 df-1st 7726 df-2nd 7727 df-mvmul 21304 |
This theorem is referenced by: mvmumamul1 21317 |
Copyright terms: Public domain | W3C validator |