MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvmulfv Structured version   Visualization version   GIF version

Theorem mvmulfv 21601
Description: A cell/element in the vector resulting from a multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019.)
Hypotheses
Ref Expression
mvmulfval.x × = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mvmulfval.b 𝐵 = (Base‘𝑅)
mvmulfval.t · = (.r𝑅)
mvmulfval.r (𝜑𝑅𝑉)
mvmulfval.m (𝜑𝑀 ∈ Fin)
mvmulfval.n (𝜑𝑁 ∈ Fin)
mvmulval.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mvmulval.y (𝜑𝑌 ∈ (𝐵m 𝑁))
mvmulfv.i (𝜑𝐼𝑀)
Assertion
Ref Expression
mvmulfv (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌𝑗)))))
Distinct variable groups:   𝜑,𝑗   𝑗,𝑀   𝑗,𝑁   𝑅,𝑗   𝑗,𝑋   𝑗,𝑌   𝑗,𝐼
Allowed substitution hints:   𝐵(𝑗)   · (𝑗)   × (𝑗)   𝑉(𝑗)

Proof of Theorem mvmulfv
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 mvmulfval.x . . 3 × = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 mvmulfval.b . . 3 𝐵 = (Base‘𝑅)
3 mvmulfval.t . . 3 · = (.r𝑅)
4 mvmulfval.r . . 3 (𝜑𝑅𝑉)
5 mvmulfval.m . . 3 (𝜑𝑀 ∈ Fin)
6 mvmulfval.n . . 3 (𝜑𝑁 ∈ Fin)
7 mvmulval.x . . 3 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
8 mvmulval.y . . 3 (𝜑𝑌 ∈ (𝐵m 𝑁))
91, 2, 3, 4, 5, 6, 7, 8mvmulval 21600 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))))
10 oveq1 7262 . . . . . 6 (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
1110adantl 481 . . . . 5 ((𝜑𝑖 = 𝐼) → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
1211oveq1d 7270 . . . 4 ((𝜑𝑖 = 𝐼) → ((𝑖𝑋𝑗) · (𝑌𝑗)) = ((𝐼𝑋𝑗) · (𝑌𝑗)))
1312mpteq2dv 5172 . . 3 ((𝜑𝑖 = 𝐼) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))) = (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌𝑗))))
1413oveq2d 7271 . 2 ((𝜑𝑖 = 𝐼) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌𝑗)))))
15 mvmulfv.i . 2 (𝜑𝐼𝑀)
16 ovexd 7290 . 2 (𝜑 → (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌𝑗)))) ∈ V)
179, 14, 15, 16fvmptd 6864 1 (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  Basecbs 16840  .rcmulr 16889   Σg cgsu 17068   maVecMul cmvmul 21597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-mvmul 21598
This theorem is referenced by:  mvmumamul1  21611
  Copyright terms: Public domain W3C validator