| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mvmulfv | Structured version Visualization version GIF version | ||
| Description: A cell/element in the vector resulting from a multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019.) |
| Ref | Expression |
|---|---|
| mvmulfval.x | ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) |
| mvmulfval.b | ⊢ 𝐵 = (Base‘𝑅) |
| mvmulfval.t | ⊢ · = (.r‘𝑅) |
| mvmulfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| mvmulfval.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
| mvmulfval.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mvmulval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
| mvmulval.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
| mvmulfv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑀) |
| Ref | Expression |
|---|---|
| mvmulfv | ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvmulfval.x | . . 3 ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) | |
| 2 | mvmulfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | mvmulfval.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 4 | mvmulfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 5 | mvmulfval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
| 6 | mvmulfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 7 | mvmulval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
| 8 | mvmulval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mvmulval 22430 | . 2 ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
| 10 | oveq1 7394 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) |
| 12 | 11 | oveq1d 7402 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) = ((𝐼𝑋𝑗) · (𝑌‘𝑗))) |
| 13 | 12 | mpteq2dv 5201 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗)))) |
| 14 | 13 | oveq2d 7403 | . 2 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
| 15 | mvmulfv.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑀) | |
| 16 | ovexd 7422 | . 2 ⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗)))) ∈ V) | |
| 17 | 9, 14, 15, 16 | fvmptd 6975 | 1 ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 ↦ cmpt 5188 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 Basecbs 17179 .rcmulr 17221 Σg cgsu 17403 maVecMul cmvmul 22427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-mvmul 22428 |
| This theorem is referenced by: mvmumamul1 22441 |
| Copyright terms: Public domain | W3C validator |