![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mvmulfv | Structured version Visualization version GIF version |
Description: A cell/element in the vector resulting from a multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019.) |
Ref | Expression |
---|---|
mvmulfval.x | ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) |
mvmulfval.b | ⊢ 𝐵 = (Base‘𝑅) |
mvmulfval.t | ⊢ · = (.r‘𝑅) |
mvmulfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
mvmulfval.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
mvmulfval.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mvmulval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
mvmulval.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 𝑁)) |
mvmulfv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑀) |
Ref | Expression |
---|---|
mvmulfv | ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvmulfval.x | . . 3 ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) | |
2 | mvmulfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | mvmulfval.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | mvmulfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | mvmulfval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
6 | mvmulfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | mvmulval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) | |
8 | mvmulval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 𝑁)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mvmulval 20846 | . 2 ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
10 | oveq1 6977 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) | |
11 | 10 | adantl 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) |
12 | 11 | oveq1d 6985 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) = ((𝐼𝑋𝑗) · (𝑌‘𝑗))) |
13 | 12 | mpteq2dv 5017 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗)))) |
14 | 13 | oveq2d 6986 | . 2 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
15 | mvmulfv.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑀) | |
16 | ovexd 7004 | . 2 ⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗)))) ∈ V) | |
17 | 9, 14, 15, 16 | fvmptd 6595 | 1 ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 Vcvv 3409 〈cop 4441 ↦ cmpt 5002 × cxp 5398 ‘cfv 6182 (class class class)co 6970 ↑𝑚 cmap 8198 Fincfn 8298 Basecbs 16329 .rcmulr 16412 Σg cgsu 16560 maVecMul cmvmul 20843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-1st 7494 df-2nd 7495 df-mvmul 20844 |
This theorem is referenced by: mvmumamul1 20857 |
Copyright terms: Public domain | W3C validator |