MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvmulval Structured version   Visualization version   GIF version

Theorem mvmulval 22570
Description: Multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019.)
Hypotheses
Ref Expression
mvmulfval.x × = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mvmulfval.b 𝐵 = (Base‘𝑅)
mvmulfval.t · = (.r𝑅)
mvmulfval.r (𝜑𝑅𝑉)
mvmulfval.m (𝜑𝑀 ∈ Fin)
mvmulfval.n (𝜑𝑁 ∈ Fin)
mvmulval.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mvmulval.y (𝜑𝑌 ∈ (𝐵m 𝑁))
Assertion
Ref Expression
mvmulval (𝜑 → (𝑋 × 𝑌) = (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))))
Distinct variable groups:   𝑖,𝑗,𝜑   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   · ,𝑖   𝑖,𝑋,𝑗   𝑖,𝑌,𝑗
Allowed substitution hints:   𝐵(𝑖,𝑗)   · (𝑗)   × (𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem mvmulval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvmulfval.x . . 3 × = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 mvmulfval.b . . 3 𝐵 = (Base‘𝑅)
3 mvmulfval.t . . 3 · = (.r𝑅)
4 mvmulfval.r . . 3 (𝜑𝑅𝑉)
5 mvmulfval.m . . 3 (𝜑𝑀 ∈ Fin)
6 mvmulfval.n . . 3 (𝜑𝑁 ∈ Fin)
71, 2, 3, 4, 5, 6mvmulfval 22569 . 2 (𝜑× = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
8 oveq 7454 . . . . . . 7 (𝑥 = 𝑋 → (𝑖𝑥𝑗) = (𝑖𝑋𝑗))
9 fveq1 6919 . . . . . . 7 (𝑦 = 𝑌 → (𝑦𝑗) = (𝑌𝑗))
108, 9oveqan12d 7467 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑖𝑥𝑗) · (𝑦𝑗)) = ((𝑖𝑋𝑗) · (𝑌𝑗)))
1110adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑖𝑥𝑗) · (𝑦𝑗)) = ((𝑖𝑋𝑗) · (𝑌𝑗)))
1211mpteq2dv 5268 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))
1312oveq2d 7464 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗)))))
1413mpteq2dv 5268 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗))))) = (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))))
15 mvmulval.x . 2 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
16 mvmulval.y . 2 (𝜑𝑌 ∈ (𝐵m 𝑁))
175mptexd 7261 . 2 (𝜑 → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))) ∈ V)
187, 14, 15, 16, 17ovmpod 7602 1 (𝜑 → (𝑋 × 𝑌) = (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cmpt 5249   × cxp 5698  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  Basecbs 17258  .rcmulr 17312   Σg cgsu 17500   maVecMul cmvmul 22567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-mvmul 22568
This theorem is referenced by:  mvmulfv  22571  mavmulval  22572
  Copyright terms: Public domain W3C validator