MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvmulval Structured version   Visualization version   GIF version

Theorem mvmulval 22456
Description: Multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019.)
Hypotheses
Ref Expression
mvmulfval.x × = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mvmulfval.b 𝐵 = (Base‘𝑅)
mvmulfval.t · = (.r𝑅)
mvmulfval.r (𝜑𝑅𝑉)
mvmulfval.m (𝜑𝑀 ∈ Fin)
mvmulfval.n (𝜑𝑁 ∈ Fin)
mvmulval.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mvmulval.y (𝜑𝑌 ∈ (𝐵m 𝑁))
Assertion
Ref Expression
mvmulval (𝜑 → (𝑋 × 𝑌) = (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))))
Distinct variable groups:   𝑖,𝑗,𝜑   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   · ,𝑖   𝑖,𝑋,𝑗   𝑖,𝑌,𝑗
Allowed substitution hints:   𝐵(𝑖,𝑗)   · (𝑗)   × (𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem mvmulval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvmulfval.x . . 3 × = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 mvmulfval.b . . 3 𝐵 = (Base‘𝑅)
3 mvmulfval.t . . 3 · = (.r𝑅)
4 mvmulfval.r . . 3 (𝜑𝑅𝑉)
5 mvmulfval.m . . 3 (𝜑𝑀 ∈ Fin)
6 mvmulfval.n . . 3 (𝜑𝑁 ∈ Fin)
71, 2, 3, 4, 5, 6mvmulfval 22455 . 2 (𝜑× = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
8 oveq 7352 . . . . . . 7 (𝑥 = 𝑋 → (𝑖𝑥𝑗) = (𝑖𝑋𝑗))
9 fveq1 6821 . . . . . . 7 (𝑦 = 𝑌 → (𝑦𝑗) = (𝑌𝑗))
108, 9oveqan12d 7365 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑖𝑥𝑗) · (𝑦𝑗)) = ((𝑖𝑋𝑗) · (𝑌𝑗)))
1110adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑖𝑥𝑗) · (𝑦𝑗)) = ((𝑖𝑋𝑗) · (𝑌𝑗)))
1211mpteq2dv 5185 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))
1312oveq2d 7362 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗)))))
1413mpteq2dv 5185 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗))))) = (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))))
15 mvmulval.x . 2 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
16 mvmulval.y . 2 (𝜑𝑌 ∈ (𝐵m 𝑁))
175mptexd 7158 . 2 (𝜑 → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))) ∈ V)
187, 14, 15, 16, 17ovmpod 7498 1 (𝜑 → (𝑋 × 𝑌) = (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582  cmpt 5172   × cxp 5614  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  Basecbs 17117  .rcmulr 17159   Σg cgsu 17341   maVecMul cmvmul 22453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-mvmul 22454
This theorem is referenced by:  mvmulfv  22457  mavmulval  22458
  Copyright terms: Public domain W3C validator