Step | Hyp | Ref
| Expression |
1 | | mvmumamul1.t |
. . . . . 6
⊢ · =
(𝑅 maVecMul 〈𝑀, 𝑁〉) |
2 | | mvmumamul1.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
3 | | eqid 2758 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
4 | | mvmumamul1.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
5 | 4 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → 𝑅 ∈ Ring) |
6 | | mvmumamul1.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ Fin) |
7 | 6 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → 𝑀 ∈ Fin) |
8 | | mvmumamul1.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ Fin) |
9 | 8 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → 𝑁 ∈ Fin) |
10 | | mvmumamul1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
11 | 10 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → 𝐴 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
12 | | mvmumamul1.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
13 | 12 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
14 | | simpr 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → 𝑖 ∈ 𝑀) |
15 | 1, 2, 3, 5, 7, 9, 11, 13, 14 | mvmulfv 21244 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝐴𝑘)(.r‘𝑅)(𝑌‘𝑘))))) |
16 | 15 | adantlr 714 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅)) ∧ 𝑖 ∈ 𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝐴𝑘)(.r‘𝑅)(𝑌‘𝑘))))) |
17 | | fveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝑌‘𝑗) = (𝑌‘𝑘)) |
18 | | oveq1 7157 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝑗𝑍∅) = (𝑘𝑍∅)) |
19 | 17, 18 | eqeq12d 2774 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((𝑌‘𝑗) = (𝑗𝑍∅) ↔ (𝑌‘𝑘) = (𝑘𝑍∅))) |
20 | 19 | rspccv 3538 |
. . . . . . . . . 10
⊢
(∀𝑗 ∈
𝑁 (𝑌‘𝑗) = (𝑗𝑍∅) → (𝑘 ∈ 𝑁 → (𝑌‘𝑘) = (𝑘𝑍∅))) |
21 | 20 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅)) → (𝑘 ∈ 𝑁 → (𝑌‘𝑘) = (𝑘𝑍∅))) |
22 | 21 | imp 410 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅)) ∧ 𝑘 ∈ 𝑁) → (𝑌‘𝑘) = (𝑘𝑍∅)) |
23 | 22 | oveq2d 7166 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅)) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝐴𝑘)(.r‘𝑅)(𝑌‘𝑘)) = ((𝑖𝐴𝑘)(.r‘𝑅)(𝑘𝑍∅))) |
24 | 23 | mpteq2dva 5127 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅)) → (𝑘 ∈ 𝑁 ↦ ((𝑖𝐴𝑘)(.r‘𝑅)(𝑌‘𝑘))) = (𝑘 ∈ 𝑁 ↦ ((𝑖𝐴𝑘)(.r‘𝑅)(𝑘𝑍∅)))) |
25 | 24 | oveq2d 7166 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅)) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝐴𝑘)(.r‘𝑅)(𝑌‘𝑘)))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝐴𝑘)(.r‘𝑅)(𝑘𝑍∅))))) |
26 | 25 | adantr 484 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅)) ∧ 𝑖 ∈ 𝑀) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝐴𝑘)(.r‘𝑅)(𝑌‘𝑘)))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝐴𝑘)(.r‘𝑅)(𝑘𝑍∅))))) |
27 | | mvmumamul1.x |
. . . . . . 7
⊢ × =
(𝑅 maMul 〈𝑀, 𝑁, {∅}〉) |
28 | | snfi 8614 |
. . . . . . . 8
⊢ {∅}
∈ Fin |
29 | 28 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → {∅} ∈
Fin) |
30 | | mvmumamul1.z |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × {∅}))) |
31 | 30 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → 𝑍 ∈ (𝐵 ↑m (𝑁 × {∅}))) |
32 | | 0ex 5177 |
. . . . . . . . 9
⊢ ∅
∈ V |
33 | 32 | snid 4558 |
. . . . . . . 8
⊢ ∅
∈ {∅} |
34 | 33 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → ∅ ∈
{∅}) |
35 | 27, 2, 3, 5, 7, 9, 29, 11, 31, 14, 34 | mamufv 21089 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → (𝑖(𝐴 × 𝑍)∅) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝐴𝑘)(.r‘𝑅)(𝑘𝑍∅))))) |
36 | 35 | eqcomd 2764 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑀) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝐴𝑘)(.r‘𝑅)(𝑘𝑍∅)))) = (𝑖(𝐴 × 𝑍)∅)) |
37 | 36 | adantlr 714 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅)) ∧ 𝑖 ∈ 𝑀) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝐴𝑘)(.r‘𝑅)(𝑘𝑍∅)))) = (𝑖(𝐴 × 𝑍)∅)) |
38 | 16, 26, 37 | 3eqtrd 2797 |
. . 3
⊢ (((𝜑 ∧ ∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅)) ∧ 𝑖 ∈ 𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅)) |
39 | 38 | ralrimiva 3113 |
. 2
⊢ ((𝜑 ∧ ∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅)) → ∀𝑖 ∈ 𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅)) |
40 | 39 | ex 416 |
1
⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅) → ∀𝑖 ∈ 𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅))) |