MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvmumamul1 Structured version   Visualization version   GIF version

Theorem mvmumamul1 21165
Description: The multiplication of an MxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an MxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
mvmumamul1.x × = (𝑅 maMul ⟨𝑀, 𝑁, {∅}⟩)
mvmumamul1.t · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mvmumamul1.b 𝐵 = (Base‘𝑅)
mvmumamul1.r (𝜑𝑅 ∈ Ring)
mvmumamul1.m (𝜑𝑀 ∈ Fin)
mvmumamul1.n (𝜑𝑁 ∈ Fin)
mvmumamul1.a (𝜑𝐴 ∈ (𝐵m (𝑀 × 𝑁)))
mvmumamul1.y (𝜑𝑌 ∈ (𝐵m 𝑁))
mvmumamul1.z (𝜑𝑍 ∈ (𝐵m (𝑁 × {∅})))
Assertion
Ref Expression
mvmumamul1 (𝜑 → (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅)))
Distinct variable groups:   𝑖,𝑗,𝑁   𝑖,𝑌,𝑗   𝑖,𝑍,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑅(𝑖,𝑗)   · (𝑖,𝑗)   × (𝑖,𝑗)   𝑀(𝑖,𝑗)

Proof of Theorem mvmumamul1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mvmumamul1.t . . . . . 6 · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 mvmumamul1.b . . . . . 6 𝐵 = (Base‘𝑅)
3 eqid 2823 . . . . . 6 (.r𝑅) = (.r𝑅)
4 mvmumamul1.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
54adantr 483 . . . . . 6 ((𝜑𝑖𝑀) → 𝑅 ∈ Ring)
6 mvmumamul1.m . . . . . . 7 (𝜑𝑀 ∈ Fin)
76adantr 483 . . . . . 6 ((𝜑𝑖𝑀) → 𝑀 ∈ Fin)
8 mvmumamul1.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
98adantr 483 . . . . . 6 ((𝜑𝑖𝑀) → 𝑁 ∈ Fin)
10 mvmumamul1.a . . . . . . 7 (𝜑𝐴 ∈ (𝐵m (𝑀 × 𝑁)))
1110adantr 483 . . . . . 6 ((𝜑𝑖𝑀) → 𝐴 ∈ (𝐵m (𝑀 × 𝑁)))
12 mvmumamul1.y . . . . . . 7 (𝜑𝑌 ∈ (𝐵m 𝑁))
1312adantr 483 . . . . . 6 ((𝜑𝑖𝑀) → 𝑌 ∈ (𝐵m 𝑁))
14 simpr 487 . . . . . 6 ((𝜑𝑖𝑀) → 𝑖𝑀)
151, 2, 3, 5, 7, 9, 11, 13, 14mvmulfv 21155 . . . . 5 ((𝜑𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))))
1615adantlr 713 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))))
17 fveq2 6672 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑌𝑗) = (𝑌𝑘))
18 oveq1 7165 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑗𝑍∅) = (𝑘𝑍∅))
1917, 18eqeq12d 2839 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑌𝑗) = (𝑗𝑍∅) ↔ (𝑌𝑘) = (𝑘𝑍∅)))
2019rspccv 3622 . . . . . . . . . 10 (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → (𝑘𝑁 → (𝑌𝑘) = (𝑘𝑍∅)))
2120adantl 484 . . . . . . . . 9 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑘𝑁 → (𝑌𝑘) = (𝑘𝑍∅)))
2221imp 409 . . . . . . . 8 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑘𝑁) → (𝑌𝑘) = (𝑘𝑍∅))
2322oveq2d 7174 . . . . . . 7 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑘𝑁) → ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)) = ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))
2423mpteq2dva 5163 . . . . . 6 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘))) = (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅))))
2524oveq2d 7174 . . . . 5 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
2625adantr 483 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
27 mvmumamul1.x . . . . . . 7 × = (𝑅 maMul ⟨𝑀, 𝑁, {∅}⟩)
28 snfi 8596 . . . . . . . 8 {∅} ∈ Fin
2928a1i 11 . . . . . . 7 ((𝜑𝑖𝑀) → {∅} ∈ Fin)
30 mvmumamul1.z . . . . . . . 8 (𝜑𝑍 ∈ (𝐵m (𝑁 × {∅})))
3130adantr 483 . . . . . . 7 ((𝜑𝑖𝑀) → 𝑍 ∈ (𝐵m (𝑁 × {∅})))
32 0ex 5213 . . . . . . . . 9 ∅ ∈ V
3332snid 4603 . . . . . . . 8 ∅ ∈ {∅}
3433a1i 11 . . . . . . 7 ((𝜑𝑖𝑀) → ∅ ∈ {∅})
3527, 2, 3, 5, 7, 9, 29, 11, 31, 14, 34mamufv 21000 . . . . . 6 ((𝜑𝑖𝑀) → (𝑖(𝐴 × 𝑍)∅) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
3635eqcomd 2829 . . . . 5 ((𝜑𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))) = (𝑖(𝐴 × 𝑍)∅))
3736adantlr 713 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))) = (𝑖(𝐴 × 𝑍)∅))
3816, 26, 373eqtrd 2862 . . 3 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅))
3938ralrimiva 3184 . 2 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅))
4039ex 415 1 (𝜑 → (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  c0 4293  {csn 4569  cop 4575  cotp 4577  cmpt 5148   × cxp 5555  cfv 6357  (class class class)co 7158  m cmap 8408  Fincfn 8511  Basecbs 16485  .rcmulr 16568   Σg cgsu 16716  Ringcrg 19299   maMul cmmul 20996   maVecMul cmvmul 21151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-1o 8104  df-en 8512  df-fin 8515  df-mamu 20997  df-mvmul 21152
This theorem is referenced by:  mavmumamul1  21166
  Copyright terms: Public domain W3C validator