MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvmumamul1 Structured version   Visualization version   GIF version

Theorem mvmumamul1 22441
Description: The multiplication of an MxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an MxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
mvmumamul1.x × = (𝑅 maMul ⟨𝑀, 𝑁, {∅}⟩)
mvmumamul1.t · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mvmumamul1.b 𝐵 = (Base‘𝑅)
mvmumamul1.r (𝜑𝑅 ∈ Ring)
mvmumamul1.m (𝜑𝑀 ∈ Fin)
mvmumamul1.n (𝜑𝑁 ∈ Fin)
mvmumamul1.a (𝜑𝐴 ∈ (𝐵m (𝑀 × 𝑁)))
mvmumamul1.y (𝜑𝑌 ∈ (𝐵m 𝑁))
mvmumamul1.z (𝜑𝑍 ∈ (𝐵m (𝑁 × {∅})))
Assertion
Ref Expression
mvmumamul1 (𝜑 → (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅)))
Distinct variable groups:   𝑖,𝑗,𝑁   𝑖,𝑌,𝑗   𝑖,𝑍,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑅(𝑖,𝑗)   · (𝑖,𝑗)   × (𝑖,𝑗)   𝑀(𝑖,𝑗)

Proof of Theorem mvmumamul1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mvmumamul1.t . . . . . 6 · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 mvmumamul1.b . . . . . 6 𝐵 = (Base‘𝑅)
3 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
4 mvmumamul1.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
54adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑅 ∈ Ring)
6 mvmumamul1.m . . . . . . 7 (𝜑𝑀 ∈ Fin)
76adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑀 ∈ Fin)
8 mvmumamul1.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
98adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑁 ∈ Fin)
10 mvmumamul1.a . . . . . . 7 (𝜑𝐴 ∈ (𝐵m (𝑀 × 𝑁)))
1110adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝐴 ∈ (𝐵m (𝑀 × 𝑁)))
12 mvmumamul1.y . . . . . . 7 (𝜑𝑌 ∈ (𝐵m 𝑁))
1312adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑌 ∈ (𝐵m 𝑁))
14 simpr 484 . . . . . 6 ((𝜑𝑖𝑀) → 𝑖𝑀)
151, 2, 3, 5, 7, 9, 11, 13, 14mvmulfv 22431 . . . . 5 ((𝜑𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))))
1615adantlr 715 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))))
17 fveq2 6858 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑌𝑗) = (𝑌𝑘))
18 oveq1 7394 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑗𝑍∅) = (𝑘𝑍∅))
1917, 18eqeq12d 2745 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑌𝑗) = (𝑗𝑍∅) ↔ (𝑌𝑘) = (𝑘𝑍∅)))
2019rspccv 3585 . . . . . . . . . 10 (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → (𝑘𝑁 → (𝑌𝑘) = (𝑘𝑍∅)))
2120adantl 481 . . . . . . . . 9 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑘𝑁 → (𝑌𝑘) = (𝑘𝑍∅)))
2221imp 406 . . . . . . . 8 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑘𝑁) → (𝑌𝑘) = (𝑘𝑍∅))
2322oveq2d 7403 . . . . . . 7 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑘𝑁) → ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)) = ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))
2423mpteq2dva 5200 . . . . . 6 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘))) = (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅))))
2524oveq2d 7403 . . . . 5 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
2625adantr 480 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
27 mvmumamul1.x . . . . . . 7 × = (𝑅 maMul ⟨𝑀, 𝑁, {∅}⟩)
28 snfi 9014 . . . . . . . 8 {∅} ∈ Fin
2928a1i 11 . . . . . . 7 ((𝜑𝑖𝑀) → {∅} ∈ Fin)
30 mvmumamul1.z . . . . . . . 8 (𝜑𝑍 ∈ (𝐵m (𝑁 × {∅})))
3130adantr 480 . . . . . . 7 ((𝜑𝑖𝑀) → 𝑍 ∈ (𝐵m (𝑁 × {∅})))
32 0ex 5262 . . . . . . . . 9 ∅ ∈ V
3332snid 4626 . . . . . . . 8 ∅ ∈ {∅}
3433a1i 11 . . . . . . 7 ((𝜑𝑖𝑀) → ∅ ∈ {∅})
3527, 2, 3, 5, 7, 9, 29, 11, 31, 14, 34mamufv 22281 . . . . . 6 ((𝜑𝑖𝑀) → (𝑖(𝐴 × 𝑍)∅) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
3635eqcomd 2735 . . . . 5 ((𝜑𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))) = (𝑖(𝐴 × 𝑍)∅))
3736adantlr 715 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))) = (𝑖(𝐴 × 𝑍)∅))
3816, 26, 373eqtrd 2768 . . 3 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅))
3938ralrimiva 3125 . 2 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅))
4039ex 412 1 (𝜑 → (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  c0 4296  {csn 4589  cop 4595  cotp 4597  cmpt 5188   × cxp 5636  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  Basecbs 17179  .rcmulr 17221   Σg cgsu 17403  Ringcrg 20142   maMul cmmul 22277   maVecMul cmvmul 22427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-en 8919  df-fin 8922  df-mamu 22278  df-mvmul 22428
This theorem is referenced by:  mavmumamul1  22442
  Copyright terms: Public domain W3C validator