MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvmumamul1 Structured version   Visualization version   GIF version

Theorem mvmumamul1 22561
Description: The multiplication of an MxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an MxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
mvmumamul1.x × = (𝑅 maMul ⟨𝑀, 𝑁, {∅}⟩)
mvmumamul1.t · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mvmumamul1.b 𝐵 = (Base‘𝑅)
mvmumamul1.r (𝜑𝑅 ∈ Ring)
mvmumamul1.m (𝜑𝑀 ∈ Fin)
mvmumamul1.n (𝜑𝑁 ∈ Fin)
mvmumamul1.a (𝜑𝐴 ∈ (𝐵m (𝑀 × 𝑁)))
mvmumamul1.y (𝜑𝑌 ∈ (𝐵m 𝑁))
mvmumamul1.z (𝜑𝑍 ∈ (𝐵m (𝑁 × {∅})))
Assertion
Ref Expression
mvmumamul1 (𝜑 → (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅)))
Distinct variable groups:   𝑖,𝑗,𝑁   𝑖,𝑌,𝑗   𝑖,𝑍,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑅(𝑖,𝑗)   · (𝑖,𝑗)   × (𝑖,𝑗)   𝑀(𝑖,𝑗)

Proof of Theorem mvmumamul1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mvmumamul1.t . . . . . 6 · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 mvmumamul1.b . . . . . 6 𝐵 = (Base‘𝑅)
3 eqid 2736 . . . . . 6 (.r𝑅) = (.r𝑅)
4 mvmumamul1.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
54adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑅 ∈ Ring)
6 mvmumamul1.m . . . . . . 7 (𝜑𝑀 ∈ Fin)
76adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑀 ∈ Fin)
8 mvmumamul1.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
98adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑁 ∈ Fin)
10 mvmumamul1.a . . . . . . 7 (𝜑𝐴 ∈ (𝐵m (𝑀 × 𝑁)))
1110adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝐴 ∈ (𝐵m (𝑀 × 𝑁)))
12 mvmumamul1.y . . . . . . 7 (𝜑𝑌 ∈ (𝐵m 𝑁))
1312adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑌 ∈ (𝐵m 𝑁))
14 simpr 484 . . . . . 6 ((𝜑𝑖𝑀) → 𝑖𝑀)
151, 2, 3, 5, 7, 9, 11, 13, 14mvmulfv 22551 . . . . 5 ((𝜑𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))))
1615adantlr 715 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))))
17 fveq2 6905 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑌𝑗) = (𝑌𝑘))
18 oveq1 7439 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑗𝑍∅) = (𝑘𝑍∅))
1917, 18eqeq12d 2752 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑌𝑗) = (𝑗𝑍∅) ↔ (𝑌𝑘) = (𝑘𝑍∅)))
2019rspccv 3618 . . . . . . . . . 10 (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → (𝑘𝑁 → (𝑌𝑘) = (𝑘𝑍∅)))
2120adantl 481 . . . . . . . . 9 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑘𝑁 → (𝑌𝑘) = (𝑘𝑍∅)))
2221imp 406 . . . . . . . 8 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑘𝑁) → (𝑌𝑘) = (𝑘𝑍∅))
2322oveq2d 7448 . . . . . . 7 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑘𝑁) → ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)) = ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))
2423mpteq2dva 5241 . . . . . 6 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘))) = (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅))))
2524oveq2d 7448 . . . . 5 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
2625adantr 480 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
27 mvmumamul1.x . . . . . . 7 × = (𝑅 maMul ⟨𝑀, 𝑁, {∅}⟩)
28 snfi 9084 . . . . . . . 8 {∅} ∈ Fin
2928a1i 11 . . . . . . 7 ((𝜑𝑖𝑀) → {∅} ∈ Fin)
30 mvmumamul1.z . . . . . . . 8 (𝜑𝑍 ∈ (𝐵m (𝑁 × {∅})))
3130adantr 480 . . . . . . 7 ((𝜑𝑖𝑀) → 𝑍 ∈ (𝐵m (𝑁 × {∅})))
32 0ex 5306 . . . . . . . . 9 ∅ ∈ V
3332snid 4661 . . . . . . . 8 ∅ ∈ {∅}
3433a1i 11 . . . . . . 7 ((𝜑𝑖𝑀) → ∅ ∈ {∅})
3527, 2, 3, 5, 7, 9, 29, 11, 31, 14, 34mamufv 22399 . . . . . 6 ((𝜑𝑖𝑀) → (𝑖(𝐴 × 𝑍)∅) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
3635eqcomd 2742 . . . . 5 ((𝜑𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))) = (𝑖(𝐴 × 𝑍)∅))
3736adantlr 715 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))) = (𝑖(𝐴 × 𝑍)∅))
3816, 26, 373eqtrd 2780 . . 3 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅))
3938ralrimiva 3145 . 2 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅))
4039ex 412 1 (𝜑 → (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  c0 4332  {csn 4625  cop 4631  cotp 4633  cmpt 5224   × cxp 5682  cfv 6560  (class class class)co 7432  m cmap 8867  Fincfn 8986  Basecbs 17248  .rcmulr 17299   Σg cgsu 17486  Ringcrg 20231   maMul cmmul 22395   maVecMul cmvmul 22547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-ot 4634  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-1o 8507  df-en 8987  df-fin 8990  df-mamu 22396  df-mvmul 22548
This theorem is referenced by:  mavmumamul1  22562
  Copyright terms: Public domain W3C validator