| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mvrval | Structured version Visualization version GIF version | ||
| Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| mvrfval.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| mvrfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| mvrfval.z | ⊢ 0 = (0g‘𝑅) |
| mvrfval.o | ⊢ 1 = (1r‘𝑅) |
| mvrfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mvrfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑌) |
| mvrval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| mvrval | ⊢ (𝜑 → (𝑉‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrfval.v | . . . 4 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 2 | mvrfval.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 3 | mvrfval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 4 | mvrfval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 5 | mvrfval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 6 | mvrfval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑌) | |
| 7 | 1, 2, 3, 4, 5, 6 | mvrfval 21916 | . . 3 ⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))) |
| 8 | 7 | fveq1d 6824 | . 2 ⊢ (𝜑 → (𝑉‘𝑋) = ((𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋)) |
| 9 | mvrval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 10 | eqeq2 2743 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑦 = 𝑥 ↔ 𝑦 = 𝑋)) | |
| 11 | 10 | ifbid 4499 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0)) |
| 12 | 11 | mpteq2dv 5185 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 13 | 12 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) ↔ 𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 14 | 13 | ifbid 4499 | . . . . 5 ⊢ (𝑥 = 𝑋 → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ) = if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
| 15 | 14 | mpteq2dv 5185 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
| 16 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) | |
| 17 | ovex 7379 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 18 | 2, 17 | rabex2 5279 | . . . . 5 ⊢ 𝐷 ∈ V |
| 19 | 18 | mptex 7157 | . . . 4 ⊢ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) ∈ V |
| 20 | 15, 16, 19 | fvmpt 6929 | . . 3 ⊢ (𝑋 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
| 21 | 9, 20 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
| 22 | 8, 21 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑉‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ifcif 4475 ↦ cmpt 5172 ◡ccnv 5615 “ cima 5619 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 0cc0 11003 1c1 11004 ℕcn 12122 ℕ0cn0 12378 0gc0g 17340 1rcur 20097 mVar cmvr 21840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-mvr 21845 |
| This theorem is referenced by: mvrval2 21918 mplcoe3 21971 evlslem1 22015 rhmply1vr1 22300 |
| Copyright terms: Public domain | W3C validator |