MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrval Structured version   Visualization version   GIF version

Theorem mvrval 20946
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
mvrfval.v 𝑉 = (𝐼 mVar 𝑅)
mvrfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mvrfval.z 0 = (0g𝑅)
mvrfval.o 1 = (1r𝑅)
mvrfval.i (𝜑𝐼𝑊)
mvrfval.r (𝜑𝑅𝑌)
mvrval.x (𝜑𝑋𝐼)
Assertion
Ref Expression
mvrval (𝜑 → (𝑉𝑋) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
Distinct variable groups:   0 ,𝑓   1 ,𝑓   𝑦,𝑓,𝐷   𝑦,𝑊   𝑓,,𝐼,𝑦   𝑅,𝑓   𝑓,𝑋,,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑓,)   𝐷()   𝑅(𝑦,)   1 (𝑦,)   𝑉(𝑦,𝑓,)   𝑊(𝑓,)   𝑌(𝑦,𝑓,)   0 (𝑦,)

Proof of Theorem mvrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mvrfval.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
2 mvrfval.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 mvrfval.z . . . 4 0 = (0g𝑅)
4 mvrfval.o . . . 4 1 = (1r𝑅)
5 mvrfval.i . . . 4 (𝜑𝐼𝑊)
6 mvrfval.r . . . 4 (𝜑𝑅𝑌)
71, 2, 3, 4, 5, 6mvrfval 20945 . . 3 (𝜑𝑉 = (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))))
87fveq1d 6719 . 2 (𝜑 → (𝑉𝑋) = ((𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋))
9 mvrval.x . . 3 (𝜑𝑋𝐼)
10 eqeq2 2749 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑦 = 𝑥𝑦 = 𝑋))
1110ifbid 4462 . . . . . . . 8 (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0))
1211mpteq2dv 5151 . . . . . . 7 (𝑥 = 𝑋 → (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
1312eqeq2d 2748 . . . . . 6 (𝑥 = 𝑋 → (𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) ↔ 𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
1413ifbid 4462 . . . . 5 (𝑥 = 𝑋 → if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ) = if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
1514mpteq2dv 5151 . . . 4 (𝑥 = 𝑋 → (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
16 eqid 2737 . . . 4 (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) = (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))
17 ovex 7246 . . . . . 6 (ℕ0m 𝐼) ∈ V
182, 17rabex2 5227 . . . . 5 𝐷 ∈ V
1918mptex 7039 . . . 4 (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) ∈ V
2015, 16, 19fvmpt 6818 . . 3 (𝑋𝐼 → ((𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
219, 20syl 17 . 2 (𝜑 → ((𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
228, 21eqtrd 2777 1 (𝜑 → (𝑉𝑋) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  {crab 3065  ifcif 4439  cmpt 5135  ccnv 5550  cima 5554  cfv 6380  (class class class)co 7213  m cmap 8508  Fincfn 8626  0cc0 10729  1c1 10730  cn 11830  0cn0 12090  0gc0g 16944  1rcur 19516   mVar cmvr 20864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-mvr 20869
This theorem is referenced by:  mvrval2  20947  mplcoe3  20995  evlslem1  21042
  Copyright terms: Public domain W3C validator