MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrval Structured version   Visualization version   GIF version

Theorem mvrval 21891
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
mvrfval.v 𝑉 = (𝐼 mVar 𝑅)
mvrfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mvrfval.z 0 = (0g𝑅)
mvrfval.o 1 = (1r𝑅)
mvrfval.i (𝜑𝐼𝑊)
mvrfval.r (𝜑𝑅𝑌)
mvrval.x (𝜑𝑋𝐼)
Assertion
Ref Expression
mvrval (𝜑 → (𝑉𝑋) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
Distinct variable groups:   0 ,𝑓   1 ,𝑓   𝑦,𝑓,𝐷   𝑦,𝑊   𝑓,,𝐼,𝑦   𝑅,𝑓   𝑓,𝑋,,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑓,)   𝐷()   𝑅(𝑦,)   1 (𝑦,)   𝑉(𝑦,𝑓,)   𝑊(𝑓,)   𝑌(𝑦,𝑓,)   0 (𝑦,)

Proof of Theorem mvrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mvrfval.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
2 mvrfval.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 mvrfval.z . . . 4 0 = (0g𝑅)
4 mvrfval.o . . . 4 1 = (1r𝑅)
5 mvrfval.i . . . 4 (𝜑𝐼𝑊)
6 mvrfval.r . . . 4 (𝜑𝑅𝑌)
71, 2, 3, 4, 5, 6mvrfval 21890 . . 3 (𝜑𝑉 = (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))))
87fveq1d 6860 . 2 (𝜑 → (𝑉𝑋) = ((𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋))
9 mvrval.x . . 3 (𝜑𝑋𝐼)
10 eqeq2 2741 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑦 = 𝑥𝑦 = 𝑋))
1110ifbid 4512 . . . . . . . 8 (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0))
1211mpteq2dv 5201 . . . . . . 7 (𝑥 = 𝑋 → (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
1312eqeq2d 2740 . . . . . 6 (𝑥 = 𝑋 → (𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) ↔ 𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
1413ifbid 4512 . . . . 5 (𝑥 = 𝑋 → if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ) = if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
1514mpteq2dv 5201 . . . 4 (𝑥 = 𝑋 → (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
16 eqid 2729 . . . 4 (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) = (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))
17 ovex 7420 . . . . . 6 (ℕ0m 𝐼) ∈ V
182, 17rabex2 5296 . . . . 5 𝐷 ∈ V
1918mptex 7197 . . . 4 (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) ∈ V
2015, 16, 19fvmpt 6968 . . 3 (𝑋𝐼 → ((𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
219, 20syl 17 . 2 (𝜑 → ((𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
228, 21eqtrd 2764 1 (𝜑 → (𝑉𝑋) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405  ifcif 4488  cmpt 5188  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  0cc0 11068  1c1 11069  cn 12186  0cn0 12442  0gc0g 17402  1rcur 20090   mVar cmvr 21814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-mvr 21819
This theorem is referenced by:  mvrval2  21892  mplcoe3  21945  evlslem1  21989  rhmply1vr1  22274
  Copyright terms: Public domain W3C validator