![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mvrval | Structured version Visualization version GIF version |
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
mvrfval.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mvrfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mvrfval.z | ⊢ 0 = (0g‘𝑅) |
mvrfval.o | ⊢ 1 = (1r‘𝑅) |
mvrfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mvrfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑌) |
mvrval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
mvrval | ⊢ (𝜑 → (𝑉‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrfval.v | . . . 4 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
2 | mvrfval.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
3 | mvrfval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | mvrfval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
5 | mvrfval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | mvrfval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑌) | |
7 | 1, 2, 3, 4, 5, 6 | mvrfval 21389 | . . 3 ⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))) |
8 | 7 | fveq1d 6844 | . 2 ⊢ (𝜑 → (𝑉‘𝑋) = ((𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋)) |
9 | mvrval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
10 | eqeq2 2748 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑦 = 𝑥 ↔ 𝑦 = 𝑋)) | |
11 | 10 | ifbid 4509 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0)) |
12 | 11 | mpteq2dv 5207 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
13 | 12 | eqeq2d 2747 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) ↔ 𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
14 | 13 | ifbid 4509 | . . . . 5 ⊢ (𝑥 = 𝑋 → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ) = if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
15 | 14 | mpteq2dv 5207 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
16 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) | |
17 | ovex 7390 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
18 | 2, 17 | rabex2 5291 | . . . . 5 ⊢ 𝐷 ∈ V |
19 | 18 | mptex 7173 | . . . 4 ⊢ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) ∈ V |
20 | 15, 16, 19 | fvmpt 6948 | . . 3 ⊢ (𝑋 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
21 | 9, 20 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
22 | 8, 21 | eqtrd 2776 | 1 ⊢ (𝜑 → (𝑉‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3407 ifcif 4486 ↦ cmpt 5188 ◡ccnv 5632 “ cima 5636 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 Fincfn 8883 0cc0 11051 1c1 11052 ℕcn 12153 ℕ0cn0 12413 0gc0g 17321 1rcur 19913 mVar cmvr 21307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pr 5384 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-mvr 21312 |
This theorem is referenced by: mvrval2 21391 mplcoe3 21439 evlslem1 21492 |
Copyright terms: Public domain | W3C validator |