| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mvrval | Structured version Visualization version GIF version | ||
| Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| mvrfval.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| mvrfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| mvrfval.z | ⊢ 0 = (0g‘𝑅) |
| mvrfval.o | ⊢ 1 = (1r‘𝑅) |
| mvrfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mvrfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑌) |
| mvrval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| mvrval | ⊢ (𝜑 → (𝑉‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrfval.v | . . . 4 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 2 | mvrfval.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 3 | mvrfval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 4 | mvrfval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 5 | mvrfval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 6 | mvrfval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑌) | |
| 7 | 1, 2, 3, 4, 5, 6 | mvrfval 21906 | . . 3 ⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))) |
| 8 | 7 | fveq1d 6828 | . 2 ⊢ (𝜑 → (𝑉‘𝑋) = ((𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋)) |
| 9 | mvrval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 10 | eqeq2 2741 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑦 = 𝑥 ↔ 𝑦 = 𝑋)) | |
| 11 | 10 | ifbid 4502 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0)) |
| 12 | 11 | mpteq2dv 5189 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 13 | 12 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) ↔ 𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 14 | 13 | ifbid 4502 | . . . . 5 ⊢ (𝑥 = 𝑋 → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ) = if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
| 15 | 14 | mpteq2dv 5189 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
| 16 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) | |
| 17 | ovex 7386 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 18 | 2, 17 | rabex2 5283 | . . . . 5 ⊢ 𝐷 ∈ V |
| 19 | 18 | mptex 7163 | . . . 4 ⊢ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) ∈ V |
| 20 | 15, 16, 19 | fvmpt 6934 | . . 3 ⊢ (𝑋 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
| 21 | 9, 20 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
| 22 | 8, 21 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑉‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3396 ifcif 4478 ↦ cmpt 5176 ◡ccnv 5622 “ cima 5626 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 0cc0 11028 1c1 11029 ℕcn 12146 ℕ0cn0 12402 0gc0g 17361 1rcur 20084 mVar cmvr 21830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-mvr 21835 |
| This theorem is referenced by: mvrval2 21908 mplcoe3 21961 evlslem1 22005 rhmply1vr1 22290 |
| Copyright terms: Public domain | W3C validator |