MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrval2 Structured version   Visualization version   GIF version

Theorem mvrval2 22003
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
mvrfval.v 𝑉 = (𝐼 mVar 𝑅)
mvrfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mvrfval.z 0 = (0g𝑅)
mvrfval.o 1 = (1r𝑅)
mvrfval.i (𝜑𝐼𝑊)
mvrfval.r (𝜑𝑅𝑌)
mvrval.x (𝜑𝑋𝐼)
mvrval2.f (𝜑𝐹𝐷)
Assertion
Ref Expression
mvrval2 (𝜑 → ((𝑉𝑋)‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
Distinct variable groups:   𝑦,𝐷   𝑦,𝑊   𝑦,,𝐼   ,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,)   𝐷()   𝑅(𝑦,)   1 (𝑦,)   𝐹(𝑦,)   𝑉(𝑦,)   𝑊()   𝑌(𝑦,)   0 (𝑦,)

Proof of Theorem mvrval2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mvrfval.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
2 mvrfval.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 mvrfval.z . . . 4 0 = (0g𝑅)
4 mvrfval.o . . . 4 1 = (1r𝑅)
5 mvrfval.i . . . 4 (𝜑𝐼𝑊)
6 mvrfval.r . . . 4 (𝜑𝑅𝑌)
7 mvrval.x . . . 4 (𝜑𝑋𝐼)
81, 2, 3, 4, 5, 6, 7mvrval 22002 . . 3 (𝜑 → (𝑉𝑋) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
98fveq1d 6908 . 2 (𝜑 → ((𝑉𝑋)‘𝐹) = ((𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹))
10 mvrval2.f . . 3 (𝜑𝐹𝐷)
11 eqeq1 2741 . . . . 5 (𝑓 = 𝐹 → (𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ↔ 𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
1211ifbid 4549 . . . 4 (𝑓 = 𝐹 → if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
13 eqid 2737 . . . 4 (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
144fvexi 6920 . . . . 5 1 ∈ V
153fvexi 6920 . . . . 5 0 ∈ V
1614, 15ifex 4576 . . . 4 if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) ∈ V
1712, 13, 16fvmpt 7016 . . 3 (𝐹𝐷 → ((𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
1810, 17syl 17 . 2 (𝜑 → ((𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
199, 18eqtrd 2777 1 (𝜑 → ((𝑉𝑋)‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3436  ifcif 4525  cmpt 5225  ccnv 5684  cima 5688  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  0cc0 11155  1c1 11156  cn 12266  0cn0 12526  0gc0g 17484  1rcur 20178   mVar cmvr 21925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-mvr 21930
This theorem is referenced by:  mvrid  22004  mvrf1  22006  mvrcl  22012  mhpvarcl  22152  psdmvr  22173
  Copyright terms: Public domain W3C validator