MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrval2 Structured version   Visualization version   GIF version

Theorem mvrval2 21945
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
mvrfval.v 𝑉 = (𝐼 mVar 𝑅)
mvrfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mvrfval.z 0 = (0g𝑅)
mvrfval.o 1 = (1r𝑅)
mvrfval.i (𝜑𝐼𝑊)
mvrfval.r (𝜑𝑅𝑌)
mvrval.x (𝜑𝑋𝐼)
mvrval2.f (𝜑𝐹𝐷)
Assertion
Ref Expression
mvrval2 (𝜑 → ((𝑉𝑋)‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
Distinct variable groups:   𝑦,𝐷   𝑦,𝑊   𝑦,,𝐼   ,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,)   𝐷()   𝑅(𝑦,)   1 (𝑦,)   𝐹(𝑦,)   𝑉(𝑦,)   𝑊()   𝑌(𝑦,)   0 (𝑦,)

Proof of Theorem mvrval2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mvrfval.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
2 mvrfval.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 mvrfval.z . . . 4 0 = (0g𝑅)
4 mvrfval.o . . . 4 1 = (1r𝑅)
5 mvrfval.i . . . 4 (𝜑𝐼𝑊)
6 mvrfval.r . . . 4 (𝜑𝑅𝑌)
7 mvrval.x . . . 4 (𝜑𝑋𝐼)
81, 2, 3, 4, 5, 6, 7mvrval 21944 . . 3 (𝜑 → (𝑉𝑋) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
98fveq1d 6898 . 2 (𝜑 → ((𝑉𝑋)‘𝐹) = ((𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹))
10 mvrval2.f . . 3 (𝜑𝐹𝐷)
11 eqeq1 2729 . . . . 5 (𝑓 = 𝐹 → (𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ↔ 𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
1211ifbid 4553 . . . 4 (𝑓 = 𝐹 → if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
13 eqid 2725 . . . 4 (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
144fvexi 6910 . . . . 5 1 ∈ V
153fvexi 6910 . . . . 5 0 ∈ V
1614, 15ifex 4580 . . . 4 if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) ∈ V
1712, 13, 16fvmpt 7004 . . 3 (𝐹𝐷 → ((𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
1810, 17syl 17 . 2 (𝜑 → ((𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
199, 18eqtrd 2765 1 (𝜑 → ((𝑉𝑋)‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {crab 3418  ifcif 4530  cmpt 5232  ccnv 5677  cima 5681  cfv 6549  (class class class)co 7419  m cmap 8845  Fincfn 8964  0cc0 11140  1c1 11141  cn 12245  0cn0 12505  0gc0g 17424  1rcur 20133   mVar cmvr 21855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-mvr 21860
This theorem is referenced by:  mvrid  21946  mvrf1  21948  mvrcl  21954  mhpvarcl  22095
  Copyright terms: Public domain W3C validator