![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mvrval2 | Structured version Visualization version GIF version |
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
mvrfval.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mvrfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mvrfval.z | ⊢ 0 = (0g‘𝑅) |
mvrfval.o | ⊢ 1 = (1r‘𝑅) |
mvrfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mvrfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑌) |
mvrval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
mvrval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
Ref | Expression |
---|---|
mvrval2 | ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrfval.v | . . . 4 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
2 | mvrfval.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
3 | mvrfval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | mvrfval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
5 | mvrfval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | mvrfval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑌) | |
7 | mvrval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
8 | 1, 2, 3, 4, 5, 6, 7 | mvrval 21540 | . . 3 ⊢ (𝜑 → (𝑉‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
9 | 8 | fveq1d 6893 | . 2 ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = ((𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹)) |
10 | mvrval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
11 | eqeq1 2736 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ↔ 𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) | |
12 | 11 | ifbid 4551 | . . . 4 ⊢ (𝑓 = 𝐹 → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
13 | eqid 2732 | . . . 4 ⊢ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) | |
14 | 4 | fvexi 6905 | . . . . 5 ⊢ 1 ∈ V |
15 | 3 | fvexi 6905 | . . . . 5 ⊢ 0 ∈ V |
16 | 14, 15 | ifex 4578 | . . . 4 ⊢ if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) ∈ V |
17 | 12, 13, 16 | fvmpt 6998 | . . 3 ⊢ (𝐹 ∈ 𝐷 → ((𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
18 | 10, 17 | syl 17 | . 2 ⊢ (𝜑 → ((𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
19 | 9, 18 | eqtrd 2772 | 1 ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3432 ifcif 4528 ↦ cmpt 5231 ◡ccnv 5675 “ cima 5679 ‘cfv 6543 (class class class)co 7408 ↑m cmap 8819 Fincfn 8938 0cc0 11109 1c1 11110 ℕcn 12211 ℕ0cn0 12471 0gc0g 17384 1rcur 20003 mVar cmvr 21457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-mvr 21462 |
This theorem is referenced by: mvrid 21542 mvrf1 21544 mvrcl 21550 mhpvarcl 21690 |
Copyright terms: Public domain | W3C validator |