| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpvarcl | Structured version Visualization version GIF version | ||
| Description: A power series variable is a polynomial of degree 1. (Contributed by SN, 25-May-2024.) |
| Ref | Expression |
|---|---|
| mhpvarcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpvarcl.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| mhpvarcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mhpvarcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mhpvarcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| mhpvarcl | ⊢ (𝜑 → (𝑉‘𝑋) ∈ (𝐻‘1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iffalse 4485 | . . . . . 6 ⊢ (¬ 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) | |
| 2 | mhpvarcl.v | . . . . . . . 8 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 3 | eqid 2729 | . . . . . . . 8 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 4 | eqid 2729 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 6 | mhpvarcl.i | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑊) |
| 8 | mhpvarcl.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
| 10 | mhpvarcl.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
| 12 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
| 13 | 2, 3, 4, 5, 7, 9, 11, 12 | mvrval2 21890 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑉‘𝑋)‘𝑑) = if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅))) |
| 14 | 13 | eqeq1d 2731 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) = (0g‘𝑅) ↔ if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) |
| 15 | 1, 14 | imbitrrid 246 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (¬ 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((𝑉‘𝑋)‘𝑑) = (0g‘𝑅))) |
| 16 | 15 | necon1ad 2942 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 17 | nn0subm 21329 | . . . . . . 7 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
| 18 | eqid 2729 | . . . . . . . 8 ⊢ (ℂfld ↾s ℕ0) = (ℂfld ↾s ℕ0) | |
| 19 | cnfld0 21299 | . . . . . . . 8 ⊢ 0 = (0g‘ℂfld) | |
| 20 | 18, 19 | subm0 18689 | . . . . . . 7 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂfld ↾s ℕ0))) |
| 21 | 17, 20 | ax-mp 5 | . . . . . 6 ⊢ 0 = (0g‘(ℂfld ↾s ℕ0)) |
| 22 | 18 | submmnd 18687 | . . . . . . 7 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂfld ↾s ℕ0) ∈ Mnd) |
| 23 | 17, 22 | mp1i 13 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (ℂfld ↾s ℕ0) ∈ Mnd) |
| 24 | eqid 2729 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) | |
| 25 | 1nn0 12400 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 26 | 18 | submbas 18688 | . . . . . . . . 9 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂfld ↾s ℕ0))) |
| 27 | 17, 26 | ax-mp 5 | . . . . . . . 8 ⊢ ℕ0 = (Base‘(ℂfld ↾s ℕ0)) |
| 28 | 25, 27 | eleqtri 2826 | . . . . . . 7 ⊢ 1 ∈ (Base‘(ℂfld ↾s ℕ0)) |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 1 ∈ (Base‘(ℂfld ↾s ℕ0))) |
| 30 | 21, 23, 7, 11, 24, 29 | gsummptif1n0 19845 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1) |
| 31 | oveq2 7357 | . . . . . 6 ⊢ (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((ℂfld ↾s ℕ0) Σg 𝑑) = ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) | |
| 32 | 31 | eqeq1d 2731 | . . . . 5 ⊢ (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (((ℂfld ↾s ℕ0) Σg 𝑑) = 1 ↔ ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1)) |
| 33 | 30, 32 | syl5ibrcom 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
| 34 | 16, 33 | syld 47 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
| 35 | 34 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
| 36 | mhpvarcl.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 37 | eqid 2729 | . . 3 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
| 38 | eqid 2729 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
| 39 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ ℕ0) |
| 40 | 37, 2, 38, 6, 8, 10 | mvrcl 21899 | . . 3 ⊢ (𝜑 → (𝑉‘𝑋) ∈ (Base‘(𝐼 mPoly 𝑅))) |
| 41 | 36, 37, 38, 4, 3, 39, 40 | ismhp3 22027 | . 2 ⊢ (𝜑 → ((𝑉‘𝑋) ∈ (𝐻‘1) ↔ ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1))) |
| 42 | 35, 41 | mpbird 257 | 1 ⊢ (𝜑 → (𝑉‘𝑋) ∈ (𝐻‘1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3394 ifcif 4476 ↦ cmpt 5173 ◡ccnv 5618 “ cima 5622 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 Fincfn 8872 0cc0 11009 1c1 11010 ℕcn 12128 ℕ0cn0 12384 Basecbs 17120 ↾s cress 17141 0gc0g 17343 Σg cgsu 17344 Mndcmnd 18608 SubMndcsubmnd 18656 1rcur 20066 Ringcrg 20118 ℂfldccnfld 21261 mVar cmvr 21812 mPoly cmpl 21813 mHomP cmhp 22014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-mgp 20026 df-ur 20067 df-ring 20120 df-cring 20121 df-cnfld 21262 df-psr 21816 df-mvr 21817 df-mpl 21818 df-mhp 22021 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |