MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpvarcl Structured version   Visualization version   GIF version

Theorem mhpvarcl 22152
Description: A power series variable is a polynomial of degree 1. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
mhpvarcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpvarcl.v 𝑉 = (𝐼 mVar 𝑅)
mhpvarcl.i (𝜑𝐼𝑊)
mhpvarcl.r (𝜑𝑅 ∈ Ring)
mhpvarcl.x (𝜑𝑋𝐼)
Assertion
Ref Expression
mhpvarcl (𝜑 → (𝑉𝑋) ∈ (𝐻‘1))

Proof of Theorem mhpvarcl
Dummy variables 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iffalse 4534 . . . . . 6 𝑑 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → if(𝑑 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r𝑅), (0g𝑅)) = (0g𝑅))
2 mhpvarcl.v . . . . . . . 8 𝑉 = (𝐼 mVar 𝑅)
3 eqid 2737 . . . . . . . 8 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 eqid 2737 . . . . . . . 8 (0g𝑅) = (0g𝑅)
5 eqid 2737 . . . . . . . 8 (1r𝑅) = (1r𝑅)
6 mhpvarcl.i . . . . . . . . 9 (𝜑𝐼𝑊)
76adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑊)
8 mhpvarcl.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
98adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
10 mhpvarcl.x . . . . . . . . 9 (𝜑𝑋𝐼)
1110adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
12 simpr 484 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
132, 3, 4, 5, 7, 9, 11, 12mvrval2 22003 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑉𝑋)‘𝑑) = if(𝑑 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r𝑅), (0g𝑅)))
1413eqeq1d 2739 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑉𝑋)‘𝑑) = (0g𝑅) ↔ if(𝑑 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r𝑅), (0g𝑅)) = (0g𝑅)))
151, 14imbitrrid 246 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (¬ 𝑑 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((𝑉𝑋)‘𝑑) = (0g𝑅)))
1615necon1ad 2957 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑉𝑋)‘𝑑) ≠ (0g𝑅) → 𝑑 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
17 nn0subm 21440 . . . . . . 7 0 ∈ (SubMnd‘ℂfld)
18 eqid 2737 . . . . . . . 8 (ℂflds0) = (ℂflds0)
19 cnfld0 21405 . . . . . . . 8 0 = (0g‘ℂfld)
2018, 19subm0 18828 . . . . . . 7 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
2117, 20ax-mp 5 . . . . . 6 0 = (0g‘(ℂflds0))
2218submmnd 18826 . . . . . . 7 (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂflds0) ∈ Mnd)
2317, 22mp1i 13 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (ℂflds0) ∈ Mnd)
24 eqid 2737 . . . . . 6 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
25 1nn0 12542 . . . . . . . 8 1 ∈ ℕ0
2618submbas 18827 . . . . . . . . 9 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂflds0)))
2717, 26ax-mp 5 . . . . . . . 8 0 = (Base‘(ℂflds0))
2825, 27eleqtri 2839 . . . . . . 7 1 ∈ (Base‘(ℂflds0))
2928a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 1 ∈ (Base‘(ℂflds0)))
3021, 23, 7, 11, 24, 29gsummptif1n0 19984 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((ℂflds0) Σg (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1)
31 oveq2 7439 . . . . . 6 (𝑑 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((ℂflds0) Σg 𝑑) = ((ℂflds0) Σg (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
3231eqeq1d 2739 . . . . 5 (𝑑 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (((ℂflds0) Σg 𝑑) = 1 ↔ ((ℂflds0) Σg (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1))
3330, 32syl5ibrcom 247 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((ℂflds0) Σg 𝑑) = 1))
3416, 33syld 47 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑉𝑋)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 1))
3534ralrimiva 3146 . 2 (𝜑 → ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝑉𝑋)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 1))
36 mhpvarcl.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
37 eqid 2737 . . 3 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
38 eqid 2737 . . 3 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
3925a1i 11 . . 3 (𝜑 → 1 ∈ ℕ0)
4037, 2, 38, 6, 8, 10mvrcl 22012 . . 3 (𝜑 → (𝑉𝑋) ∈ (Base‘(𝐼 mPoly 𝑅)))
4136, 37, 38, 4, 3, 39, 40ismhp3 22146 . 2 (𝜑 → ((𝑉𝑋) ∈ (𝐻‘1) ↔ ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝑉𝑋)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 1)))
4235, 41mpbird 257 1 (𝜑 → (𝑉𝑋) ∈ (𝐻‘1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  ifcif 4525  cmpt 5225  ccnv 5684  cima 5688  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  0cc0 11155  1c1 11156  cn 12266  0cn0 12526  Basecbs 17247  s cress 17274  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  SubMndcsubmnd 18795  1rcur 20178  Ringcrg 20230  fldccnfld 21364   mVar cmvr 21925   mPoly cmpl 21926   mHomP cmhp 22133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-mgp 20138  df-ur 20179  df-ring 20232  df-cring 20233  df-cnfld 21365  df-psr 21929  df-mvr 21930  df-mpl 21931  df-mhp 22140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator