![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpvarcl | Structured version Visualization version GIF version |
Description: A power series variable is a polynomial of degree 1. (Contributed by SN, 25-May-2024.) |
Ref | Expression |
---|---|
mhpvarcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpvarcl.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mhpvarcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mhpvarcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mhpvarcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
mhpvarcl | ⊢ (𝜑 → (𝑉‘𝑋) ∈ (𝐻‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalse 4557 | . . . . . 6 ⊢ (¬ 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) | |
2 | mhpvarcl.v | . . . . . . . 8 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
3 | eqid 2740 | . . . . . . . 8 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
4 | eqid 2740 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2740 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
6 | mhpvarcl.i | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑊) |
8 | mhpvarcl.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
10 | mhpvarcl.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
12 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
13 | 2, 3, 4, 5, 7, 9, 11, 12 | mvrval2 22026 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑉‘𝑋)‘𝑑) = if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅))) |
14 | 13 | eqeq1d 2742 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) = (0g‘𝑅) ↔ if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) |
15 | 1, 14 | imbitrrid 246 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (¬ 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((𝑉‘𝑋)‘𝑑) = (0g‘𝑅))) |
16 | 15 | necon1ad 2963 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
17 | nn0subm 21463 | . . . . . . 7 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
18 | eqid 2740 | . . . . . . . 8 ⊢ (ℂfld ↾s ℕ0) = (ℂfld ↾s ℕ0) | |
19 | cnfld0 21428 | . . . . . . . 8 ⊢ 0 = (0g‘ℂfld) | |
20 | 18, 19 | subm0 18850 | . . . . . . 7 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂfld ↾s ℕ0))) |
21 | 17, 20 | ax-mp 5 | . . . . . 6 ⊢ 0 = (0g‘(ℂfld ↾s ℕ0)) |
22 | 18 | submmnd 18848 | . . . . . . 7 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂfld ↾s ℕ0) ∈ Mnd) |
23 | 17, 22 | mp1i 13 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (ℂfld ↾s ℕ0) ∈ Mnd) |
24 | eqid 2740 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) | |
25 | 1nn0 12569 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
26 | 18 | submbas 18849 | . . . . . . . . 9 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂfld ↾s ℕ0))) |
27 | 17, 26 | ax-mp 5 | . . . . . . . 8 ⊢ ℕ0 = (Base‘(ℂfld ↾s ℕ0)) |
28 | 25, 27 | eleqtri 2842 | . . . . . . 7 ⊢ 1 ∈ (Base‘(ℂfld ↾s ℕ0)) |
29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 1 ∈ (Base‘(ℂfld ↾s ℕ0))) |
30 | 21, 23, 7, 11, 24, 29 | gsummptif1n0 20008 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1) |
31 | oveq2 7456 | . . . . . 6 ⊢ (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((ℂfld ↾s ℕ0) Σg 𝑑) = ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) | |
32 | 31 | eqeq1d 2742 | . . . . 5 ⊢ (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (((ℂfld ↾s ℕ0) Σg 𝑑) = 1 ↔ ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1)) |
33 | 30, 32 | syl5ibrcom 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
34 | 16, 33 | syld 47 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
35 | 34 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
36 | mhpvarcl.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
37 | eqid 2740 | . . 3 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
38 | eqid 2740 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
39 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ ℕ0) |
40 | 37, 2, 38, 6, 8, 10 | mvrcl 22035 | . . 3 ⊢ (𝜑 → (𝑉‘𝑋) ∈ (Base‘(𝐼 mPoly 𝑅))) |
41 | 36, 37, 38, 4, 3, 6, 8, 39, 40 | ismhp3 22169 | . 2 ⊢ (𝜑 → ((𝑉‘𝑋) ∈ (𝐻‘1) ↔ ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1))) |
42 | 35, 41 | mpbird 257 | 1 ⊢ (𝜑 → (𝑉‘𝑋) ∈ (𝐻‘1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 {crab 3443 ifcif 4548 ↦ cmpt 5249 ◡ccnv 5699 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Fincfn 9003 0cc0 11184 1c1 11185 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 ↾s cress 17287 0gc0g 17499 Σg cgsu 17500 Mndcmnd 18772 SubMndcsubmnd 18817 1rcur 20208 Ringcrg 20260 ℂfldccnfld 21387 mVar cmvr 21948 mPoly cmpl 21949 mHomP cmhp 22156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-gsum 17502 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-mgp 20162 df-ur 20209 df-ring 20262 df-cring 20263 df-cnfld 21388 df-psr 21952 df-mvr 21953 df-mpl 21954 df-mhp 22163 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |