| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpvarcl | Structured version Visualization version GIF version | ||
| Description: A power series variable is a polynomial of degree 1. (Contributed by SN, 25-May-2024.) |
| Ref | Expression |
|---|---|
| mhpvarcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpvarcl.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| mhpvarcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mhpvarcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mhpvarcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| mhpvarcl | ⊢ (𝜑 → (𝑉‘𝑋) ∈ (𝐻‘1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iffalse 4493 | . . . . . 6 ⊢ (¬ 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) | |
| 2 | mhpvarcl.v | . . . . . . . 8 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 3 | eqid 2729 | . . . . . . . 8 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 4 | eqid 2729 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 6 | mhpvarcl.i | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑊) |
| 8 | mhpvarcl.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
| 10 | mhpvarcl.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
| 12 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
| 13 | 2, 3, 4, 5, 7, 9, 11, 12 | mvrval2 21925 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑉‘𝑋)‘𝑑) = if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅))) |
| 14 | 13 | eqeq1d 2731 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) = (0g‘𝑅) ↔ if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) |
| 15 | 1, 14 | imbitrrid 246 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (¬ 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((𝑉‘𝑋)‘𝑑) = (0g‘𝑅))) |
| 16 | 15 | necon1ad 2942 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 17 | nn0subm 21364 | . . . . . . 7 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
| 18 | eqid 2729 | . . . . . . . 8 ⊢ (ℂfld ↾s ℕ0) = (ℂfld ↾s ℕ0) | |
| 19 | cnfld0 21334 | . . . . . . . 8 ⊢ 0 = (0g‘ℂfld) | |
| 20 | 18, 19 | subm0 18724 | . . . . . . 7 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂfld ↾s ℕ0))) |
| 21 | 17, 20 | ax-mp 5 | . . . . . 6 ⊢ 0 = (0g‘(ℂfld ↾s ℕ0)) |
| 22 | 18 | submmnd 18722 | . . . . . . 7 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂfld ↾s ℕ0) ∈ Mnd) |
| 23 | 17, 22 | mp1i 13 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (ℂfld ↾s ℕ0) ∈ Mnd) |
| 24 | eqid 2729 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) | |
| 25 | 1nn0 12434 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 26 | 18 | submbas 18723 | . . . . . . . . 9 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂfld ↾s ℕ0))) |
| 27 | 17, 26 | ax-mp 5 | . . . . . . . 8 ⊢ ℕ0 = (Base‘(ℂfld ↾s ℕ0)) |
| 28 | 25, 27 | eleqtri 2826 | . . . . . . 7 ⊢ 1 ∈ (Base‘(ℂfld ↾s ℕ0)) |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 1 ∈ (Base‘(ℂfld ↾s ℕ0))) |
| 30 | 21, 23, 7, 11, 24, 29 | gsummptif1n0 19880 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1) |
| 31 | oveq2 7377 | . . . . . 6 ⊢ (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((ℂfld ↾s ℕ0) Σg 𝑑) = ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) | |
| 32 | 31 | eqeq1d 2731 | . . . . 5 ⊢ (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (((ℂfld ↾s ℕ0) Σg 𝑑) = 1 ↔ ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1)) |
| 33 | 30, 32 | syl5ibrcom 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
| 34 | 16, 33 | syld 47 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
| 35 | 34 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
| 36 | mhpvarcl.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 37 | eqid 2729 | . . 3 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
| 38 | eqid 2729 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
| 39 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ ℕ0) |
| 40 | 37, 2, 38, 6, 8, 10 | mvrcl 21934 | . . 3 ⊢ (𝜑 → (𝑉‘𝑋) ∈ (Base‘(𝐼 mPoly 𝑅))) |
| 41 | 36, 37, 38, 4, 3, 39, 40 | ismhp3 22062 | . 2 ⊢ (𝜑 → ((𝑉‘𝑋) ∈ (𝐻‘1) ↔ ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1))) |
| 42 | 35, 41 | mpbird 257 | 1 ⊢ (𝜑 → (𝑉‘𝑋) ∈ (𝐻‘1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3402 ifcif 4484 ↦ cmpt 5183 ◡ccnv 5630 “ cima 5634 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 0cc0 11044 1c1 11045 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 0gc0g 17378 Σg cgsu 17379 Mndcmnd 18643 SubMndcsubmnd 18691 1rcur 20101 Ringcrg 20153 ℂfldccnfld 21296 mVar cmvr 21847 mPoly cmpl 21848 mHomP cmhp 22049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-gsum 17381 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-grp 18850 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-mgp 20061 df-ur 20102 df-ring 20155 df-cring 20156 df-cnfld 21297 df-psr 21851 df-mvr 21852 df-mpl 21853 df-mhp 22056 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |