Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mhpvarcl | Structured version Visualization version GIF version |
Description: A power series variable is a polynomial of degree 1. (Contributed by SN, 25-May-2024.) |
Ref | Expression |
---|---|
mhpvarcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpvarcl.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mhpvarcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mhpvarcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mhpvarcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
mhpvarcl | ⊢ (𝜑 → (𝑉‘𝑋) ∈ (𝐻‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalse 4473 | . . . . . 6 ⊢ (¬ 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) | |
2 | mhpvarcl.v | . . . . . . . 8 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
3 | eqid 2739 | . . . . . . . 8 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
4 | eqid 2739 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2739 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
6 | mhpvarcl.i | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑊) |
8 | mhpvarcl.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
10 | mhpvarcl.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
12 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
13 | 2, 3, 4, 5, 7, 9, 11, 12 | mvrval2 21172 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑉‘𝑋)‘𝑑) = if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅))) |
14 | 13 | eqeq1d 2741 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) = (0g‘𝑅) ↔ if(𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) |
15 | 1, 14 | syl5ibr 245 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (¬ 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((𝑉‘𝑋)‘𝑑) = (0g‘𝑅))) |
16 | 15 | necon1ad 2961 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → 𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
17 | nn0subm 20634 | . . . . . . 7 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
18 | eqid 2739 | . . . . . . . 8 ⊢ (ℂfld ↾s ℕ0) = (ℂfld ↾s ℕ0) | |
19 | cnfld0 20603 | . . . . . . . 8 ⊢ 0 = (0g‘ℂfld) | |
20 | 18, 19 | subm0 18435 | . . . . . . 7 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂfld ↾s ℕ0))) |
21 | 17, 20 | ax-mp 5 | . . . . . 6 ⊢ 0 = (0g‘(ℂfld ↾s ℕ0)) |
22 | 18 | submmnd 18433 | . . . . . . 7 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂfld ↾s ℕ0) ∈ Mnd) |
23 | 17, 22 | mp1i 13 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (ℂfld ↾s ℕ0) ∈ Mnd) |
24 | eqid 2739 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) | |
25 | 1nn0 12232 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
26 | 18 | submbas 18434 | . . . . . . . . 9 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂfld ↾s ℕ0))) |
27 | 17, 26 | ax-mp 5 | . . . . . . . 8 ⊢ ℕ0 = (Base‘(ℂfld ↾s ℕ0)) |
28 | 25, 27 | eleqtri 2838 | . . . . . . 7 ⊢ 1 ∈ (Base‘(ℂfld ↾s ℕ0)) |
29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 1 ∈ (Base‘(ℂfld ↾s ℕ0))) |
30 | 21, 23, 7, 11, 24, 29 | gsummptif1n0 19548 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1) |
31 | oveq2 7276 | . . . . . 6 ⊢ (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((ℂfld ↾s ℕ0) Σg 𝑑) = ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) | |
32 | 31 | eqeq1d 2741 | . . . . 5 ⊢ (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (((ℂfld ↾s ℕ0) Σg 𝑑) = 1 ↔ ((ℂfld ↾s ℕ0) Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1)) |
33 | 30, 32 | syl5ibrcom 246 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
34 | 16, 33 | syld 47 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
35 | 34 | ralrimiva 3109 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1)) |
36 | mhpvarcl.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
37 | eqid 2739 | . . 3 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
38 | eqid 2739 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
39 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ ℕ0) |
40 | 37, 2, 38, 6, 8, 10 | mvrcl 21202 | . . 3 ⊢ (𝜑 → (𝑉‘𝑋) ∈ (Base‘(𝐼 mPoly 𝑅))) |
41 | 36, 37, 38, 4, 3, 6, 8, 39, 40 | ismhp3 21314 | . 2 ⊢ (𝜑 → ((𝑉‘𝑋) ∈ (𝐻‘1) ↔ ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑉‘𝑋)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 1))) |
42 | 35, 41 | mpbird 256 | 1 ⊢ (𝜑 → (𝑉‘𝑋) ∈ (𝐻‘1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 {crab 3069 ifcif 4464 ↦ cmpt 5161 ◡ccnv 5587 “ cima 5591 ‘cfv 6430 (class class class)co 7268 ↑m cmap 8589 Fincfn 8707 0cc0 10855 1c1 10856 ℕcn 11956 ℕ0cn0 12216 Basecbs 16893 ↾s cress 16922 0gc0g 17131 Σg cgsu 17132 Mndcmnd 18366 SubMndcsubmnd 18410 1rcur 19718 Ringcrg 19764 ℂfldccnfld 20578 mVar cmvr 21089 mPoly cmpl 21090 mHomP cmhp 21300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 df-hash 14026 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-0g 17133 df-gsum 17134 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-grp 18561 df-mulg 18682 df-cntz 18904 df-cmn 19369 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-cnfld 20579 df-psr 21093 df-mvr 21094 df-mpl 21095 df-mhp 21304 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |