MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrcl Structured version   Visualization version   GIF version

Theorem mvrcl 21421
Description: A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mvrcl.s 𝑃 = (𝐼 mPoly 𝑅)
mvrcl.v 𝑉 = (𝐼 mVar 𝑅)
mvrcl.b 𝐵 = (Base‘𝑃)
mvrcl.i (𝜑𝐼𝑊)
mvrcl.r (𝜑𝑅 ∈ Ring)
mvrcl.x (𝜑𝑋𝐼)
Assertion
Ref Expression
mvrcl (𝜑 → (𝑉𝑋) ∈ 𝐵)

Proof of Theorem mvrcl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 mvrcl.v . . 3 𝑉 = (𝐼 mVar 𝑅)
3 eqid 2736 . . 3 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
4 mvrcl.i . . 3 (𝜑𝐼𝑊)
5 mvrcl.r . . 3 (𝜑𝑅 ∈ Ring)
6 mvrcl.x . . 3 (𝜑𝑋𝐼)
71, 2, 3, 4, 5, 6mvrcl2 21395 . 2 (𝜑 → (𝑉𝑋) ∈ (Base‘(𝐼 mPwSer 𝑅)))
8 fvexd 6857 . . 3 (𝜑 → (𝑉𝑋) ∈ V)
9 eqid 2736 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
10 eqid 2736 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
111, 9, 10, 3, 7psrelbas 21347 . . . 4 (𝜑 → (𝑉𝑋):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1211ffund 6672 . . 3 (𝜑 → Fun (𝑉𝑋))
13 fvexd 6857 . . 3 (𝜑 → (0g𝑅) ∈ V)
14 snfi 8988 . . . 4 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin
1514a1i 11 . . 3 (𝜑 → {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin)
16 eqid 2736 . . . . . 6 (0g𝑅) = (0g𝑅)
17 eqid 2736 . . . . . 6 (1r𝑅) = (1r𝑅)
184adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝐼𝑊)
195adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑅 ∈ Ring)
206adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑋𝐼)
21 simpr 485 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))
22 eldifsn 4747 . . . . . . . 8 (𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ↔ (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ≠ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
2321, 22sylib 217 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ≠ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
2423simpld 495 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
252, 10, 16, 17, 18, 19, 20, 24mvrval2 21391 . . . . 5 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ((𝑉𝑋)‘𝑥) = if(𝑥 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r𝑅), (0g𝑅)))
2623simprd 496 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ≠ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
2726neneqd 2948 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ¬ 𝑥 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
2827iffalsed 4497 . . . . 5 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → if(𝑥 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r𝑅), (0g𝑅)) = (0g𝑅))
2925, 28eqtrd 2776 . . . 4 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ((𝑉𝑋)‘𝑥) = (0g𝑅))
3011, 29suppss 8125 . . 3 (𝜑 → ((𝑉𝑋) supp (0g𝑅)) ⊆ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
31 suppssfifsupp 9320 . . 3 ((((𝑉𝑋) ∈ V ∧ Fun (𝑉𝑋) ∧ (0g𝑅) ∈ V) ∧ ({(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin ∧ ((𝑉𝑋) supp (0g𝑅)) ⊆ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑉𝑋) finSupp (0g𝑅))
328, 12, 13, 15, 30, 31syl32anc 1378 . 2 (𝜑 → (𝑉𝑋) finSupp (0g𝑅))
33 mvrcl.s . . 3 𝑃 = (𝐼 mPoly 𝑅)
34 mvrcl.b . . 3 𝐵 = (Base‘𝑃)
3533, 1, 3, 16, 34mplelbas 21399 . 2 ((𝑉𝑋) ∈ 𝐵 ↔ ((𝑉𝑋) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑉𝑋) finSupp (0g𝑅)))
367, 32, 35sylanbrc 583 1 (𝜑 → (𝑉𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188  ccnv 5632  cima 5636  Fun wfun 6490  cfv 6496  (class class class)co 7357   supp csupp 8092  m cmap 8765  Fincfn 8883   finSupp cfsupp 9305  0cc0 11051  1c1 11052  cn 12153  0cn0 12413  Basecbs 17083  0gc0g 17321  1rcur 19913  Ringcrg 19964   mPwSer cmps 21306   mVar cmvr 21307   mPoly cmpl 21308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-tset 17152  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-mgp 19897  df-ur 19914  df-ring 19966  df-psr 21311  df-mvr 21312  df-mpl 21313
This theorem is referenced by:  subrgmvrf  21435  mplcoe3  21439  mplcoe5lem  21440  mplcoe5  21441  mplcoe2  21442  mplbas2  21443  mvrf2  21468  evlsvarpw  21504  mpfproj  21512  mpfind  21517  mhpvarcl  21538  vr1cl  21588  evlsvarval  40735  selvcllem5  40747
  Copyright terms: Public domain W3C validator