MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrcl Structured version   Visualization version   GIF version

Theorem mvrcl 21882
Description: A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mvrcl.s 𝑃 = (𝐼 mPoly 𝑅)
mvrcl.v 𝑉 = (𝐼 mVar 𝑅)
mvrcl.b 𝐵 = (Base‘𝑃)
mvrcl.i (𝜑𝐼𝑊)
mvrcl.r (𝜑𝑅 ∈ Ring)
mvrcl.x (𝜑𝑋𝐼)
Assertion
Ref Expression
mvrcl (𝜑 → (𝑉𝑋) ∈ 𝐵)

Proof of Theorem mvrcl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . 3 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 mvrcl.v . . 3 𝑉 = (𝐼 mVar 𝑅)
3 eqid 2724 . . 3 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
4 mvrcl.i . . 3 (𝜑𝐼𝑊)
5 mvrcl.r . . 3 (𝜑𝑅 ∈ Ring)
6 mvrcl.x . . 3 (𝜑𝑋𝐼)
71, 2, 3, 4, 5, 6mvrcl2 21877 . 2 (𝜑 → (𝑉𝑋) ∈ (Base‘(𝐼 mPwSer 𝑅)))
8 fvexd 6897 . . 3 (𝜑 → (𝑉𝑋) ∈ V)
9 eqid 2724 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
10 eqid 2724 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
111, 9, 10, 3, 7psrelbas 21828 . . . 4 (𝜑 → (𝑉𝑋):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1211ffund 6712 . . 3 (𝜑 → Fun (𝑉𝑋))
13 fvexd 6897 . . 3 (𝜑 → (0g𝑅) ∈ V)
14 snfi 9041 . . . 4 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin
1514a1i 11 . . 3 (𝜑 → {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin)
16 eqid 2724 . . . . . 6 (0g𝑅) = (0g𝑅)
17 eqid 2724 . . . . . 6 (1r𝑅) = (1r𝑅)
184adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝐼𝑊)
195adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑅 ∈ Ring)
206adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑋𝐼)
21 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))
22 eldifsn 4783 . . . . . . . 8 (𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ↔ (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ≠ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
2321, 22sylib 217 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ≠ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
2423simpld 494 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
252, 10, 16, 17, 18, 19, 20, 24mvrval2 21873 . . . . 5 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ((𝑉𝑋)‘𝑥) = if(𝑥 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r𝑅), (0g𝑅)))
2623simprd 495 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ≠ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
2726neneqd 2937 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ¬ 𝑥 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
2827iffalsed 4532 . . . . 5 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → if(𝑥 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r𝑅), (0g𝑅)) = (0g𝑅))
2925, 28eqtrd 2764 . . . 4 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ((𝑉𝑋)‘𝑥) = (0g𝑅))
3011, 29suppss 8174 . . 3 (𝜑 → ((𝑉𝑋) supp (0g𝑅)) ⊆ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
31 suppssfifsupp 9375 . . 3 ((((𝑉𝑋) ∈ V ∧ Fun (𝑉𝑋) ∧ (0g𝑅) ∈ V) ∧ ({(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin ∧ ((𝑉𝑋) supp (0g𝑅)) ⊆ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑉𝑋) finSupp (0g𝑅))
328, 12, 13, 15, 30, 31syl32anc 1375 . 2 (𝜑 → (𝑉𝑋) finSupp (0g𝑅))
33 mvrcl.s . . 3 𝑃 = (𝐼 mPoly 𝑅)
34 mvrcl.b . . 3 𝐵 = (Base‘𝑃)
3533, 1, 3, 16, 34mplelbas 21881 . 2 ((𝑉𝑋) ∈ 𝐵 ↔ ((𝑉𝑋) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑉𝑋) finSupp (0g𝑅)))
367, 32, 35sylanbrc 582 1 (𝜑 → (𝑉𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2932  {crab 3424  Vcvv 3466  cdif 3938  wss 3941  ifcif 4521  {csn 4621   class class class wbr 5139  cmpt 5222  ccnv 5666  cima 5670  Fun wfun 6528  cfv 6534  (class class class)co 7402   supp csupp 8141  m cmap 8817  Fincfn 8936   finSupp cfsupp 9358  0cc0 11107  1c1 11108  cn 12211  0cn0 12471  Basecbs 17149  0gc0g 17390  1rcur 20082  Ringcrg 20134   mPwSer cmps 21787   mVar cmvr 21788   mPoly cmpl 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13486  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-tset 17221  df-0g 17392  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-grp 18862  df-mgp 20036  df-ur 20083  df-ring 20136  df-psr 21792  df-mvr 21793  df-mpl 21794
This theorem is referenced by:  mvrf2  21883  subrgmvrf  21920  mplcoe3  21924  mplcoe5lem  21925  mplcoe5  21926  mplcoe2  21927  mplbas2  21928  evlsvarpw  21988  mpfproj  21996  mpfind  22001  mhpvarcl  22020  vr1cl  22080  evlsvarval  41666  selvcllem5  41683  selvvvval  41686
  Copyright terms: Public domain W3C validator