| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mvrcl | Structured version Visualization version GIF version | ||
| Description: A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mvrcl.s | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mvrcl.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| mvrcl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mvrcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mvrcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mvrcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| mvrcl | ⊢ (𝜑 → (𝑉‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 2 | mvrcl.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 3 | eqid 2736 | . . 3 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 4 | mvrcl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | mvrcl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | mvrcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 7 | 1, 2, 3, 4, 5, 6 | mvrcl2 21952 | . 2 ⊢ (𝜑 → (𝑉‘𝑋) ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 8 | fvexd 6896 | . . 3 ⊢ (𝜑 → (𝑉‘𝑋) ∈ V) | |
| 9 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 10 | eqid 2736 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 11 | 1, 9, 10, 3, 7 | psrelbas 21899 | . . . 4 ⊢ (𝜑 → (𝑉‘𝑋):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 12 | 11 | ffund 6715 | . . 3 ⊢ (𝜑 → Fun (𝑉‘𝑋)) |
| 13 | fvexd 6896 | . . 3 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
| 14 | snfi 9062 | . . . 4 ⊢ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin | |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin) |
| 16 | eqid 2736 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 17 | eqid 2736 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 18 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝐼 ∈ 𝑊) |
| 19 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑅 ∈ Ring) |
| 20 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑋 ∈ 𝐼) |
| 21 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) | |
| 22 | eldifsn 4767 | . . . . . . . 8 ⊢ (𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ↔ (𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ≠ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) | |
| 23 | 21, 22 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ≠ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 24 | 23 | simpld 494 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) |
| 25 | 2, 10, 16, 17, 18, 19, 20, 24 | mvrval2 21948 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ((𝑉‘𝑋)‘𝑥) = if(𝑥 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅))) |
| 26 | 23 | simprd 495 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ≠ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 27 | 26 | neneqd 2938 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ¬ 𝑥 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 28 | 27 | iffalsed 4516 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → if(𝑥 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 29 | 25, 28 | eqtrd 2771 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ((𝑉‘𝑋)‘𝑥) = (0g‘𝑅)) |
| 30 | 11, 29 | suppss 8198 | . . 3 ⊢ (𝜑 → ((𝑉‘𝑋) supp (0g‘𝑅)) ⊆ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) |
| 31 | suppssfifsupp 9397 | . . 3 ⊢ ((((𝑉‘𝑋) ∈ V ∧ Fun (𝑉‘𝑋) ∧ (0g‘𝑅) ∈ V) ∧ ({(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin ∧ ((𝑉‘𝑋) supp (0g‘𝑅)) ⊆ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑉‘𝑋) finSupp (0g‘𝑅)) | |
| 32 | 8, 12, 13, 15, 30, 31 | syl32anc 1380 | . 2 ⊢ (𝜑 → (𝑉‘𝑋) finSupp (0g‘𝑅)) |
| 33 | mvrcl.s | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 34 | mvrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 35 | 33, 1, 3, 16, 34 | mplelbas 21956 | . 2 ⊢ ((𝑉‘𝑋) ∈ 𝐵 ↔ ((𝑉‘𝑋) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑉‘𝑋) finSupp (0g‘𝑅))) |
| 36 | 7, 32, 35 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑉‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {crab 3420 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 ifcif 4505 {csn 4606 class class class wbr 5124 ↦ cmpt 5206 ◡ccnv 5658 “ cima 5662 Fun wfun 6530 ‘cfv 6536 (class class class)co 7410 supp csupp 8164 ↑m cmap 8845 Fincfn 8964 finSupp cfsupp 9378 0cc0 11134 1c1 11135 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 0gc0g 17458 1rcur 20146 Ringcrg 20198 mPwSer cmps 21869 mVar cmvr 21870 mPoly cmpl 21871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-tset 17295 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-mgp 20106 df-ur 20147 df-ring 20200 df-psr 21874 df-mvr 21875 df-mpl 21876 |
| This theorem is referenced by: mvrf2 21958 subrgmvrf 21997 mplcoe3 22001 mplcoe5lem 22002 mplcoe5 22003 mplcoe2 22004 mplbas2 22005 evlsvarpw 22057 mpfproj 22065 mpfind 22070 mhpvarcl 22091 vr1cl 22158 evlsvarval 42555 selvcllem5 42572 |
| Copyright terms: Public domain | W3C validator |