| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mvrcl | Structured version Visualization version GIF version | ||
| Description: A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mvrcl.s | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mvrcl.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| mvrcl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mvrcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mvrcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mvrcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| mvrcl | ⊢ (𝜑 → (𝑉‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 2 | mvrcl.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 3 | eqid 2733 | . . 3 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 4 | mvrcl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | mvrcl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | mvrcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 7 | 1, 2, 3, 4, 5, 6 | mvrcl2 21933 | . 2 ⊢ (𝜑 → (𝑉‘𝑋) ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 8 | fvexd 6846 | . . 3 ⊢ (𝜑 → (𝑉‘𝑋) ∈ V) | |
| 9 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 10 | eqid 2733 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 11 | 1, 9, 10, 3, 7 | psrelbas 21881 | . . . 4 ⊢ (𝜑 → (𝑉‘𝑋):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 12 | 11 | ffund 6663 | . . 3 ⊢ (𝜑 → Fun (𝑉‘𝑋)) |
| 13 | fvexd 6846 | . . 3 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
| 14 | snfi 8976 | . . . 4 ⊢ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin | |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin) |
| 16 | eqid 2733 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 17 | eqid 2733 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 18 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝐼 ∈ 𝑊) |
| 19 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑅 ∈ Ring) |
| 20 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑋 ∈ 𝐼) |
| 21 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) | |
| 22 | eldifsn 4739 | . . . . . . . 8 ⊢ (𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ↔ (𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ≠ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) | |
| 23 | 21, 22 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ≠ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 24 | 23 | simpld 494 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) |
| 25 | 2, 10, 16, 17, 18, 19, 20, 24 | mvrval2 21929 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ((𝑉‘𝑋)‘𝑥) = if(𝑥 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅))) |
| 26 | 23 | simprd 495 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ≠ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 27 | 26 | neneqd 2934 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ¬ 𝑥 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 28 | 27 | iffalsed 4487 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → if(𝑥 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 29 | 25, 28 | eqtrd 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ((𝑉‘𝑋)‘𝑥) = (0g‘𝑅)) |
| 30 | 11, 29 | suppss 8133 | . . 3 ⊢ (𝜑 → ((𝑉‘𝑋) supp (0g‘𝑅)) ⊆ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) |
| 31 | suppssfifsupp 9275 | . . 3 ⊢ ((((𝑉‘𝑋) ∈ V ∧ Fun (𝑉‘𝑋) ∧ (0g‘𝑅) ∈ V) ∧ ({(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin ∧ ((𝑉‘𝑋) supp (0g‘𝑅)) ⊆ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑉‘𝑋) finSupp (0g‘𝑅)) | |
| 32 | 8, 12, 13, 15, 30, 31 | syl32anc 1380 | . 2 ⊢ (𝜑 → (𝑉‘𝑋) finSupp (0g‘𝑅)) |
| 33 | mvrcl.s | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 34 | mvrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 35 | 33, 1, 3, 16, 34 | mplelbas 21937 | . 2 ⊢ ((𝑉‘𝑋) ∈ 𝐵 ↔ ((𝑉‘𝑋) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑉‘𝑋) finSupp (0g‘𝑅))) |
| 36 | 7, 32, 35 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑉‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 ifcif 4476 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 ◡ccnv 5620 “ cima 5624 Fun wfun 6483 ‘cfv 6489 (class class class)co 7355 supp csupp 8099 ↑m cmap 8759 Fincfn 8879 finSupp cfsupp 9256 0cc0 11017 1c1 11018 ℕcn 12136 ℕ0cn0 12392 Basecbs 17127 0gc0g 17350 1rcur 20107 Ringcrg 20159 mPwSer cmps 21851 mVar cmvr 21852 mPoly cmpl 21853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-tset 17187 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-mgp 20067 df-ur 20108 df-ring 20161 df-psr 21856 df-mvr 21857 df-mpl 21858 |
| This theorem is referenced by: mvrf2 21939 subrgmvrf 21980 mplcoe3 21984 mplcoe5lem 21985 mplcoe5 21986 mplcoe2 21987 mplbas2 21988 evlsvarpw 22045 mpfproj 22056 mpfind 22061 mhpvarcl 22082 vr1cl 22149 mplmulmvr 33632 evlvarval 33634 esplyind 33659 evlsvarval 42726 selvcllem5 42740 |
| Copyright terms: Public domain | W3C validator |