| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mvrid | Structured version Visualization version GIF version | ||
| Description: The 𝑋𝑖-th coefficient of the term 𝑋𝑖 is 1. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| mvrfval.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| mvrfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| mvrfval.z | ⊢ 0 = (0g‘𝑅) |
| mvrfval.o | ⊢ 1 = (1r‘𝑅) |
| mvrfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mvrfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑌) |
| mvrval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| mvrid | ⊢ (𝜑 → ((𝑉‘𝑋)‘(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrfval.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 2 | mvrfval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 3 | mvrfval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | mvrfval.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 5 | mvrfval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 6 | mvrfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑌) | |
| 7 | mvrval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 8 | 1nn0 12397 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 9 | 2 | snifpsrbag 21858 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ 1 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ 𝐷) |
| 10 | 5, 8, 9 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ 𝐷) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 10 | mvrval2 21921 | . 2 ⊢ (𝜑 → ((𝑉‘𝑋)‘(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = if((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
| 12 | eqid 2731 | . . 3 ⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) | |
| 13 | 12 | iftruei 4482 | . 2 ⊢ if((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) = 1 |
| 14 | 11, 13 | eqtrdi 2782 | 1 ⊢ (𝜑 → ((𝑉‘𝑋)‘(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ifcif 4475 ↦ cmpt 5172 ◡ccnv 5615 “ cima 5619 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 0cc0 11006 1c1 11007 ℕcn 12125 ℕ0cn0 12381 0gc0g 17343 1rcur 20100 mVar cmvr 21843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-nn 12126 df-n0 12382 df-mvr 21848 |
| This theorem is referenced by: mvrf1 21924 |
| Copyright terms: Public domain | W3C validator |