Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mvrid | Structured version Visualization version GIF version |
Description: The 𝑋𝑖-th coefficient of the term 𝑋𝑖 is 1. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
mvrfval.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mvrfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mvrfval.z | ⊢ 0 = (0g‘𝑅) |
mvrfval.o | ⊢ 1 = (1r‘𝑅) |
mvrfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mvrfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑌) |
mvrval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
mvrid | ⊢ (𝜑 → ((𝑉‘𝑋)‘(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrfval.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
2 | mvrfval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
3 | mvrfval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | mvrfval.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
5 | mvrfval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | mvrfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑌) | |
7 | mvrval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
8 | 1nn0 12232 | . . . 4 ⊢ 1 ∈ ℕ0 | |
9 | 2 | snifpsrbag 21106 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ 1 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ 𝐷) |
10 | 5, 8, 9 | sylancl 585 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ 𝐷) |
11 | 1, 2, 3, 4, 5, 6, 7, 10 | mvrval2 21172 | . 2 ⊢ (𝜑 → ((𝑉‘𝑋)‘(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = if((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
12 | eqid 2739 | . . 3 ⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) | |
13 | 12 | iftruei 4471 | . 2 ⊢ if((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) = 1 |
14 | 11, 13 | eqtrdi 2795 | 1 ⊢ (𝜑 → ((𝑉‘𝑋)‘(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 {crab 3069 ifcif 4464 ↦ cmpt 5161 ◡ccnv 5587 “ cima 5591 ‘cfv 6430 (class class class)co 7268 ↑m cmap 8589 Fincfn 8707 0cc0 10855 1c1 10856 ℕcn 11956 ℕ0cn0 12216 0gc0g 17131 1rcur 19718 mVar cmvr 21089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-nn 11957 df-n0 12217 df-mvr 21094 |
This theorem is referenced by: mvrf1 21175 |
Copyright terms: Public domain | W3C validator |