MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgrvtxm1uvtx Structured version   Visualization version   GIF version

Theorem nbusgrvtxm1uvtx 29350
Description: If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, the vertex is universal. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypothesis
Ref Expression
uvtxnm1nbgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbusgrvtxm1uvtx ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑈 ∈ (UnivVtx‘𝐺)))

Proof of Theorem nbusgrvtxm1uvtx
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 uvtxnm1nbgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
21nbgrssovtx 29306 . . . . . 6 (𝐺 NeighbVtx 𝑈) ⊆ (𝑉 ∖ {𝑈})
32sseli 3931 . . . . 5 (𝑣 ∈ (𝐺 NeighbVtx 𝑈) → 𝑣 ∈ (𝑉 ∖ {𝑈}))
4 eldifsn 4737 . . . . . 6 (𝑣 ∈ (𝑉 ∖ {𝑈}) ↔ (𝑣𝑉𝑣𝑈))
51nbusgrvtxm1 29324 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑣𝑉𝑣𝑈) → 𝑣 ∈ (𝐺 NeighbVtx 𝑈))))
65imp 406 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → ((𝑣𝑉𝑣𝑈) → 𝑣 ∈ (𝐺 NeighbVtx 𝑈)))
74, 6biimtrid 242 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → (𝑣 ∈ (𝑉 ∖ {𝑈}) → 𝑣 ∈ (𝐺 NeighbVtx 𝑈)))
83, 7impbid2 226 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → (𝑣 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑣 ∈ (𝑉 ∖ {𝑈})))
98eqrdv 2727 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → (𝐺 NeighbVtx 𝑈) = (𝑉 ∖ {𝑈}))
101uvtxnbgrb 29346 . . . 4 (𝑈𝑉 → (𝑈 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑈) = (𝑉 ∖ {𝑈})))
1110ad2antlr 727 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → (𝑈 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑈) = (𝑉 ∖ {𝑈})))
129, 11mpbird 257 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → 𝑈 ∈ (UnivVtx‘𝐺))
1312ex 412 1 ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑈 ∈ (UnivVtx‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3900  {csn 4577  cfv 6482  (class class class)co 7349  1c1 11010  cmin 11347  chash 14237  Vtxcvtx 28941  FinUSGraphcfusgr 29261   NeighbVtx cnbgr 29277  UnivVtxcuvtx 29330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-fusgr 29262  df-nbgr 29278  df-uvtx 29331
This theorem is referenced by:  uvtxnbvtxm1  29351
  Copyright terms: Public domain W3C validator