![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccssioo2 | Structured version Visualization version GIF version |
Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
Ref | Expression |
---|---|
iccssioo2 | ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4333 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) | |
2 | 1 | adantr 479 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ≠ ∅) |
3 | ndmioo 13355 | . . . 4 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅) | |
4 | 3 | necon1ai 2966 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
5 | 2, 4 | syl 17 | . 2 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
6 | eliooord 13387 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) | |
7 | 6 | adantr 479 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
8 | 7 | simpld 493 | . 2 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
9 | eliooord 13387 | . . . 4 ⊢ (𝐷 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐷 ∧ 𝐷 < 𝐵)) | |
10 | 9 | adantl 480 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝐷 ∧ 𝐷 < 𝐵)) |
11 | 10 | simprd 494 | . 2 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐷 < 𝐵) |
12 | iccssioo 13397 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) | |
13 | 5, 8, 11, 12 | syl12anc 833 | 1 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 ≠ wne 2938 ⊆ wss 3947 ∅c0 4321 class class class wbr 5147 (class class class)co 7411 ℝ*cxr 11251 < clt 11252 (,)cioo 13328 [,]cicc 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ioo 13332 df-icc 13335 |
This theorem is referenced by: dvivthlem1 25760 dvivthlem2 25761 amgmlem 26730 ioosconn 34536 aks4d1p1p5 41246 amgmwlem 47936 |
Copyright terms: Public domain | W3C validator |