MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccssioo2 Structured version   Visualization version   GIF version

Theorem iccssioo2 13319
Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccssioo2 ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))

Proof of Theorem iccssioo2
StepHypRef Expression
1 ne0i 4288 . . . 4 (𝐶 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
21adantr 480 . . 3 ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ≠ ∅)
3 ndmioo 13272 . . . 4 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
43necon1ai 2955 . . 3 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
52, 4syl 17 . 2 ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
6 eliooord 13305 . . . 4 (𝐶 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐶𝐶 < 𝐵))
76adantr 480 . . 3 ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝐶𝐶 < 𝐵))
87simpld 494 . 2 ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶)
9 eliooord 13305 . . . 4 (𝐷 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐷𝐷 < 𝐵))
109adantl 481 . . 3 ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝐷𝐷 < 𝐵))
1110simprd 495 . 2 ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐷 < 𝐵)
12 iccssioo 13315 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
135, 8, 11, 12syl12anc 836 1 ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wne 2928  wss 3897  c0 4280   class class class wbr 5089  (class class class)co 7346  *cxr 11145   < clt 11146  (,)cioo 13245  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ioo 13249  df-icc 13252
This theorem is referenced by:  dvivthlem1  25940  dvivthlem2  25941  amgmlem  26927  ioosconn  35291  aks4d1p1p5  42178  amgmwlem  49913
  Copyright terms: Public domain W3C validator