Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iccssioo2 | Structured version Visualization version GIF version |
Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
Ref | Expression |
---|---|
iccssioo2 | ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4268 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ≠ ∅) |
3 | ndmioo 13106 | . . . 4 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅) | |
4 | 3 | necon1ai 2971 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
5 | 2, 4 | syl 17 | . 2 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
6 | eliooord 13138 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) | |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
8 | 7 | simpld 495 | . 2 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
9 | eliooord 13138 | . . . 4 ⊢ (𝐷 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐷 ∧ 𝐷 < 𝐵)) | |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝐷 ∧ 𝐷 < 𝐵)) |
11 | 10 | simprd 496 | . 2 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐷 < 𝐵) |
12 | iccssioo 13148 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) | |
13 | 5, 8, 11, 12 | syl12anc 834 | 1 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 (class class class)co 7275 ℝ*cxr 11008 < clt 11009 (,)cioo 13079 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ioo 13083 df-icc 13086 |
This theorem is referenced by: dvivthlem1 25172 dvivthlem2 25173 amgmlem 26139 ioosconn 33209 aks4d1p1p5 40083 amgmwlem 46506 |
Copyright terms: Public domain | W3C validator |