MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzoel1 Structured version   Visualization version   GIF version

Theorem elfzoel1 13385
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoel1 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)

Proof of Theorem elfzoel1
StepHypRef Expression
1 ne0i 4268 . . 3 (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅)
2 fzof 13384 . . . . . 6 ..^:(ℤ × ℤ)⟶𝒫 ℤ
32fdmi 6612 . . . . 5 dom ..^ = (ℤ × ℤ)
43ndmov 7456 . . . 4 (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅)
54necon1ai 2971 . . 3 ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ))
61, 5syl 17 . 2 (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ))
76simpld 495 1 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wne 2943  c0 4256  𝒫 cpw 4533   × cxp 5587  (class class class)co 7275  cz 12319  ..^cfzo 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-neg 11208  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383
This theorem is referenced by:  elfzoelz  13387  elfzo2  13390  elfzole1  13395  elfzolt2  13396  elfzolt3  13397  elfzolt3b  13399  fzospliti  13419  fzoaddel  13440  elincfzoext  13445  fzosubel  13446  fzosubel3  13448  fzofzp1  13484  fzostep1  13503  fzomaxdiflem  15054  fzocongeq  16033  fzom1ne1  31122  caratheodorylem1  44064
  Copyright terms: Public domain W3C validator