MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzoel1 Structured version   Visualization version   GIF version

Theorem elfzoel1 13694
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoel1 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)

Proof of Theorem elfzoel1
StepHypRef Expression
1 ne0i 4347 . . 3 (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅)
2 fzof 13693 . . . . . 6 ..^:(ℤ × ℤ)⟶𝒫 ℤ
32fdmi 6748 . . . . 5 dom ..^ = (ℤ × ℤ)
43ndmov 7617 . . . 4 (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅)
54necon1ai 2966 . . 3 ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ))
61, 5syl 17 . 2 (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ))
76simpld 494 1 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wne 2938  c0 4339  𝒫 cpw 4605   × cxp 5687  (class class class)co 7431  cz 12611  ..^cfzo 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-neg 11493  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692
This theorem is referenced by:  elfzoelz  13696  elfzo2  13699  elfzole1  13704  elfzolt2  13705  elfzolt3  13706  elfzolt3b  13708  fzospliti  13728  fzoaddel  13753  elincfzoext  13759  fzosubel  13760  fzosubel3  13762  fzofzp1  13800  fzostep1  13819  fzomaxdiflem  15378  fzocongeq  16358  fzom1ne1  32809  caratheodorylem1  46482  gpgedgvtx1  47955
  Copyright terms: Public domain W3C validator