| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4316 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
| 2 | fzof 13673 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6717 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
| 4 | 3 | ndmov 7591 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
| 5 | 4 | necon1ai 2959 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 7 | 6 | simprd 495 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 𝒫 cpw 4575 × cxp 5652 (class class class)co 7405 ℤcz 12588 ..^cfzo 13671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-neg 11469 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 |
| This theorem is referenced by: elfzoelz 13676 elfzo2 13679 elfzole1 13684 elfzolt2 13685 elfzolt3 13686 elfzolt2b 13687 elfzolt3b 13688 elfzop1le2 13689 fzonel 13690 elfzouz2 13691 fzonnsub 13701 fzoss1 13703 fzospliti 13708 fzodisj 13710 elfzolem1 13721 elfzo0subge1 13722 elfzo0suble 13723 fzoaddel 13733 fzo0addelr 13735 elfzoextl 13737 elfzoext 13738 elincfzoext 13739 fzosubel 13740 fzoend 13773 ssfzo12 13775 fzoopth 13778 fzofzp1 13780 elfzo1elm1fzo0 13784 fzonfzoufzol 13786 elfznelfzob 13789 peano2fzor 13790 fzostep1 13799 modsumfzodifsn 13962 addmodlteq 13964 cshwidxm1 14825 cshimadifsn0 14849 fzomaxdiflem 15361 fzo0dvdseq 16342 fzocongeq 16343 addmodlteqALT 16344 efgsp1 19718 efgsres 19719 crctcshwlkn0lem2 29793 crctcshwlkn0lem3 29794 crctcshwlkn0lem5 29796 crctcshwlkn0lem6 29797 crctcshwlkn0 29803 crctcsh 29806 eucrctshift 30224 eucrct2eupth 30226 fzssfzo 34571 signsvfn 34614 dvnmul 45972 iblspltprt 46002 stoweidlem3 46032 fourierdlem12 46148 fourierdlem50 46185 fourierdlem64 46199 fourierdlem79 46214 ormkglobd 46904 natglobalincr 46906 submodlt 47379 iccpartiltu 47436 iccpartgt 47441 bgoldbtbndlem2 47820 gpgedgvtx1 48066 |
| Copyright terms: Public domain | W3C validator |