![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel2 | β’ (π΄ β (π΅..^πΆ) β πΆ β β€) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4334 | . . 3 β’ (π΄ β (π΅..^πΆ) β (π΅..^πΆ) β β ) | |
2 | fzof 13634 | . . . . . 6 β’ ..^:(β€ Γ β€)βΆπ« β€ | |
3 | 2 | fdmi 6729 | . . . . 5 β’ dom ..^ = (β€ Γ β€) |
4 | 3 | ndmov 7595 | . . . 4 β’ (Β¬ (π΅ β β€ β§ πΆ β β€) β (π΅..^πΆ) = β ) |
5 | 4 | necon1ai 2967 | . . 3 β’ ((π΅..^πΆ) β β β (π΅ β β€ β§ πΆ β β€)) |
6 | 1, 5 | syl 17 | . 2 β’ (π΄ β (π΅..^πΆ) β (π΅ β β€ β§ πΆ β β€)) |
7 | 6 | simprd 495 | 1 β’ (π΄ β (π΅..^πΆ) β πΆ β β€) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β wcel 2105 β wne 2939 β c0 4322 π« cpw 4602 Γ cxp 5674 (class class class)co 7412 β€cz 12563 ..^cfzo 13632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-neg 11452 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 |
This theorem is referenced by: elfzoelz 13637 elfzo2 13640 elfzole1 13645 elfzolt2 13646 elfzolt3 13647 elfzolt2b 13648 elfzolt3b 13649 elfzop1le2 13650 fzonel 13651 elfzouz2 13652 fzonnsub 13662 fzoss1 13664 fzospliti 13669 fzodisj 13671 fzoaddel 13690 fzo0addelr 13692 elfzoext 13694 elincfzoext 13695 fzosubel 13696 fzoend 13728 ssfzo12 13730 fzofzp1 13734 elfzo1elm1fzo0 13738 fzonfzoufzol 13740 elfznelfzob 13743 peano2fzor 13744 fzostep1 13753 modsumfzodifsn 13914 addmodlteq 13916 cshwidxm1 14762 cshimadifsn0 14786 fzomaxdiflem 15294 fzo0dvdseq 16271 fzocongeq 16272 addmodlteqALT 16273 efgsp1 19647 efgsres 19648 crctcshwlkn0lem2 29333 crctcshwlkn0lem3 29334 crctcshwlkn0lem5 29336 crctcshwlkn0lem6 29337 crctcshwlkn0 29343 crctcsh 29346 eucrctshift 29764 eucrct2eupth 29766 fzssfzo 33849 signsvfn 33892 elfzolem1 44330 dvnmul 44958 iblspltprt 44988 stoweidlem3 45018 fourierdlem12 45134 fourierdlem50 45171 fourierdlem64 45185 fourierdlem79 45200 natglobalincr 45890 fzoopth 46334 iccpartiltu 46389 iccpartgt 46394 bgoldbtbndlem2 46773 |
Copyright terms: Public domain | W3C validator |