| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4292 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
| 2 | fzof 13559 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6663 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
| 4 | 3 | ndmov 7533 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
| 5 | 4 | necon1ai 2952 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 7 | 6 | simprd 495 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 𝒫 cpw 4551 × cxp 5617 (class class class)co 7349 ℤcz 12471 ..^cfzo 13557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-neg 11350 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 |
| This theorem is referenced by: elfzoelz 13562 elfzo2 13565 elfzole1 13570 elfzolt2 13571 elfzolt3 13572 elfzolt2b 13573 elfzolt3b 13574 elfzop1le2 13575 fzonel 13576 elfzouz2 13577 fzonnsub 13587 fzoss1 13589 fzospliti 13594 fzodisj 13596 elfzolem1 13607 elfzo0subge1 13608 elfzo0suble 13609 fzoaddel 13620 fzo0addelr 13622 elfzoextl 13624 elfzoext 13625 elincfzoext 13626 fzosubel 13627 fzoend 13660 ssfzo12 13662 fzoopth 13665 fzofzp1 13667 elfzo1elm1fzo0 13671 fzonfzoufzol 13673 elfznelfzob 13676 peano2fzor 13677 fzostep1 13686 modsumfzodifsn 13851 addmodlteq 13853 cshwidxm1 14713 cshimadifsn0 14737 fzomaxdiflem 15250 fzo0dvdseq 16234 fzocongeq 16235 addmodlteqALT 16236 efgsp1 19616 efgsres 19617 crctcshwlkn0lem2 29756 crctcshwlkn0lem3 29757 crctcshwlkn0lem5 29759 crctcshwlkn0lem6 29760 crctcshwlkn0 29766 crctcsh 29769 eucrctshift 30187 eucrct2eupth 30189 fzssfzo 34507 signsvfn 34550 dvnmul 45924 iblspltprt 45954 stoweidlem3 45984 fourierdlem12 46100 fourierdlem50 46137 fourierdlem64 46151 fourierdlem79 46166 ormkglobd 46856 natglobalincr 46858 submodlt 47334 iccpartiltu 47406 iccpartgt 47411 bgoldbtbndlem2 47790 gpgedgvtx1 48046 |
| Copyright terms: Public domain | W3C validator |