| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4300 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
| 2 | fzof 13593 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6681 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
| 4 | 3 | ndmov 7553 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
| 5 | 4 | necon1ai 2952 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 7 | 6 | simprd 495 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 𝒫 cpw 4559 × cxp 5629 (class class class)co 7369 ℤcz 12505 ..^cfzo 13591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-neg 11384 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 |
| This theorem is referenced by: elfzoelz 13596 elfzo2 13599 elfzole1 13604 elfzolt2 13605 elfzolt3 13606 elfzolt2b 13607 elfzolt3b 13608 elfzop1le2 13609 fzonel 13610 elfzouz2 13611 fzonnsub 13621 fzoss1 13623 fzospliti 13628 fzodisj 13630 elfzolem1 13641 elfzo0subge1 13642 elfzo0suble 13643 fzoaddel 13654 fzo0addelr 13656 elfzoextl 13658 elfzoext 13659 elincfzoext 13660 fzosubel 13661 fzoend 13694 ssfzo12 13696 fzoopth 13699 fzofzp1 13701 elfzo1elm1fzo0 13705 fzonfzoufzol 13707 elfznelfzob 13710 peano2fzor 13711 fzostep1 13720 modsumfzodifsn 13885 addmodlteq 13887 cshwidxm1 14748 cshimadifsn0 14772 fzomaxdiflem 15285 fzo0dvdseq 16269 fzocongeq 16270 addmodlteqALT 16271 efgsp1 19643 efgsres 19644 crctcshwlkn0lem2 29714 crctcshwlkn0lem3 29715 crctcshwlkn0lem5 29717 crctcshwlkn0lem6 29718 crctcshwlkn0 29724 crctcsh 29727 eucrctshift 30145 eucrct2eupth 30147 fzssfzo 34503 signsvfn 34546 dvnmul 45914 iblspltprt 45944 stoweidlem3 45974 fourierdlem12 46090 fourierdlem50 46127 fourierdlem64 46141 fourierdlem79 46156 ormkglobd 46846 natglobalincr 46848 submodlt 47324 iccpartiltu 47396 iccpartgt 47401 bgoldbtbndlem2 47780 gpgedgvtx1 48026 |
| Copyright terms: Public domain | W3C validator |