![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4346 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
2 | fzof 13692 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
3 | 2 | fdmi 6747 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
4 | 3 | ndmov 7616 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
5 | 4 | necon1ai 2965 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
7 | 6 | simprd 495 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ≠ wne 2937 ∅c0 4338 𝒫 cpw 4604 × cxp 5686 (class class class)co 7430 ℤcz 12610 ..^cfzo 13690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-neg 11492 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 |
This theorem is referenced by: elfzoelz 13695 elfzo2 13698 elfzole1 13703 elfzolt2 13704 elfzolt3 13705 elfzolt2b 13706 elfzolt3b 13707 elfzop1le2 13708 fzonel 13709 elfzouz2 13710 fzonnsub 13720 fzoss1 13722 fzospliti 13727 fzodisj 13729 elfzolem1 13740 elfzo0subge1 13741 elfzo0suble 13742 fzoaddel 13752 fzo0addelr 13754 elfzoextl 13756 elfzoext 13757 elincfzoext 13758 fzosubel 13759 fzoend 13792 ssfzo12 13794 fzoopth 13797 fzofzp1 13799 elfzo1elm1fzo0 13803 fzonfzoufzol 13805 elfznelfzob 13808 peano2fzor 13809 fzostep1 13818 modsumfzodifsn 13981 addmodlteq 13983 cshwidxm1 14841 cshimadifsn0 14865 fzomaxdiflem 15377 fzo0dvdseq 16356 fzocongeq 16357 addmodlteqALT 16358 efgsp1 19769 efgsres 19770 crctcshwlkn0lem2 29840 crctcshwlkn0lem3 29841 crctcshwlkn0lem5 29843 crctcshwlkn0lem6 29844 crctcshwlkn0 29850 crctcsh 29853 eucrctshift 30271 eucrct2eupth 30273 fzssfzo 34532 signsvfn 34575 dvnmul 45898 iblspltprt 45928 stoweidlem3 45958 fourierdlem12 46074 fourierdlem50 46111 fourierdlem64 46125 fourierdlem79 46140 natglobalincr 46830 submodlt 47289 iccpartiltu 47346 iccpartgt 47351 bgoldbtbndlem2 47730 gpgedgvtx1 47954 |
Copyright terms: Public domain | W3C validator |