| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4288 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
| 2 | fzof 13556 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6662 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
| 4 | 3 | ndmov 7530 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
| 5 | 4 | necon1ai 2955 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 7 | 6 | simprd 495 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 𝒫 cpw 4547 × cxp 5612 (class class class)co 7346 ℤcz 12468 ..^cfzo 13554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-neg 11347 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 |
| This theorem is referenced by: elfzoelz 13559 elfzo2 13562 elfzole1 13567 elfzolt2 13568 elfzolt3 13569 elfzolt2b 13570 elfzolt3b 13571 elfzop1le2 13572 fzonel 13573 elfzouz2 13574 fzonnsub 13584 fzoss1 13586 fzospliti 13591 fzodisj 13593 elfzolem1 13604 elfzo0subge1 13605 elfzo0suble 13606 fzoaddel 13617 fzo0addelr 13619 elfzoextl 13621 elfzoext 13622 elincfzoext 13623 fzosubel 13624 fzoend 13657 ssfzo12 13659 fzoopth 13662 fzofzp1 13664 elfzo1elm1fzo0 13668 fzonfzoufzol 13671 elfznelfzob 13674 peano2fzor 13675 fzostep1 13686 modsumfzodifsn 13851 addmodlteq 13853 cshwidxm1 14714 cshimadifsn0 14737 fzomaxdiflem 15250 fzo0dvdseq 16234 fzocongeq 16235 addmodlteqALT 16236 efgsp1 19649 efgsres 19650 crctcshwlkn0lem2 29789 crctcshwlkn0lem3 29790 crctcshwlkn0lem5 29792 crctcshwlkn0lem6 29793 crctcshwlkn0 29799 crctcsh 29802 eucrctshift 30223 eucrct2eupth 30225 fzssfzo 34552 signsvfn 34595 dvnmul 45989 iblspltprt 46019 stoweidlem3 46049 fourierdlem12 46165 fourierdlem50 46202 fourierdlem64 46216 fourierdlem79 46231 ormkglobd 46921 natglobalincr 46923 submodlt 47389 iccpartiltu 47461 iccpartgt 47466 bgoldbtbndlem2 47845 gpgedgvtx1 48101 |
| Copyright terms: Public domain | W3C validator |