Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4268 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
2 | fzof 13394 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
3 | 2 | fdmi 6604 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
4 | 3 | ndmov 7446 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
5 | 4 | necon1ai 2971 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
7 | 6 | simprd 496 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 𝒫 cpw 4533 × cxp 5582 (class class class)co 7267 ℤcz 12329 ..^cfzo 13392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-1st 7820 df-2nd 7821 df-neg 11218 df-z 12330 df-uz 12593 df-fz 13250 df-fzo 13393 |
This theorem is referenced by: elfzoelz 13397 elfzo2 13400 elfzole1 13405 elfzolt2 13406 elfzolt3 13407 elfzolt2b 13408 elfzolt3b 13409 elfzop1le2 13410 fzonel 13411 elfzouz2 13412 fzonnsub 13422 fzoss1 13424 fzospliti 13429 fzodisj 13431 fzoaddel 13450 fzo0addelr 13452 elfzoext 13454 elincfzoext 13455 fzosubel 13456 fzoend 13488 ssfzo12 13490 fzofzp1 13494 elfzo1elm1fzo0 13498 fzonfzoufzol 13500 elfznelfzob 13503 peano2fzor 13504 fzostep1 13513 modsumfzodifsn 13674 addmodlteq 13676 cshwidxm1 14530 cshimadifsn0 14553 fzomaxdiflem 15064 fzo0dvdseq 16042 fzocongeq 16043 addmodlteqALT 16044 efgsp1 19353 efgsres 19354 crctcshwlkn0lem2 28184 crctcshwlkn0lem3 28185 crctcshwlkn0lem5 28187 crctcshwlkn0lem6 28188 crctcshwlkn0 28194 crctcsh 28197 eucrctshift 28615 eucrct2eupth 28617 fzssfzo 32526 signsvfn 32569 elfzolem1 42841 dvnmul 43465 iblspltprt 43495 stoweidlem3 43525 fourierdlem12 43641 fourierdlem50 43678 fourierdlem64 43692 fourierdlem79 43707 fzoopth 44797 iccpartiltu 44852 iccpartgt 44857 bgoldbtbndlem2 45236 natglobalincr 46490 |
Copyright terms: Public domain | W3C validator |