| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4307 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
| 2 | fzof 13624 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6702 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
| 4 | 3 | ndmov 7576 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
| 5 | 4 | necon1ai 2953 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 7 | 6 | simprd 495 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 𝒫 cpw 4566 × cxp 5639 (class class class)co 7390 ℤcz 12536 ..^cfzo 13622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-neg 11415 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 |
| This theorem is referenced by: elfzoelz 13627 elfzo2 13630 elfzole1 13635 elfzolt2 13636 elfzolt3 13637 elfzolt2b 13638 elfzolt3b 13639 elfzop1le2 13640 fzonel 13641 elfzouz2 13642 fzonnsub 13652 fzoss1 13654 fzospliti 13659 fzodisj 13661 elfzolem1 13672 elfzo0subge1 13673 elfzo0suble 13674 fzoaddel 13685 fzo0addelr 13687 elfzoextl 13689 elfzoext 13690 elincfzoext 13691 fzosubel 13692 fzoend 13725 ssfzo12 13727 fzoopth 13730 fzofzp1 13732 elfzo1elm1fzo0 13736 fzonfzoufzol 13738 elfznelfzob 13741 peano2fzor 13742 fzostep1 13751 modsumfzodifsn 13916 addmodlteq 13918 cshwidxm1 14779 cshimadifsn0 14803 fzomaxdiflem 15316 fzo0dvdseq 16300 fzocongeq 16301 addmodlteqALT 16302 efgsp1 19674 efgsres 19675 crctcshwlkn0lem2 29748 crctcshwlkn0lem3 29749 crctcshwlkn0lem5 29751 crctcshwlkn0lem6 29752 crctcshwlkn0 29758 crctcsh 29761 eucrctshift 30179 eucrct2eupth 30181 fzssfzo 34537 signsvfn 34580 dvnmul 45948 iblspltprt 45978 stoweidlem3 46008 fourierdlem12 46124 fourierdlem50 46161 fourierdlem64 46175 fourierdlem79 46190 ormkglobd 46880 natglobalincr 46882 submodlt 47355 iccpartiltu 47427 iccpartgt 47432 bgoldbtbndlem2 47811 gpgedgvtx1 48057 |
| Copyright terms: Public domain | W3C validator |