![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4334 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
2 | fzof 13677 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
3 | 2 | fdmi 6731 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
4 | 3 | ndmov 7602 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
5 | 4 | necon1ai 2958 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
7 | 6 | simprd 494 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2099 ≠ wne 2930 ∅c0 4322 𝒫 cpw 4597 × cxp 5672 (class class class)co 7416 ℤcz 12604 ..^cfzo 13675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-neg 11488 df-z 12605 df-uz 12869 df-fz 13533 df-fzo 13676 |
This theorem is referenced by: elfzoelz 13680 elfzo2 13683 elfzole1 13688 elfzolt2 13689 elfzolt3 13690 elfzolt2b 13691 elfzolt3b 13692 elfzop1le2 13693 fzonel 13694 elfzouz2 13695 fzonnsub 13705 fzoss1 13707 fzospliti 13712 fzodisj 13714 fzoaddel 13733 fzo0addelr 13735 elfzoext 13737 elincfzoext 13738 fzosubel 13739 fzoend 13771 ssfzo12 13773 fzoopth 13776 fzofzp1 13778 elfzo1elm1fzo0 13782 fzonfzoufzol 13784 elfznelfzob 13787 peano2fzor 13788 fzostep1 13797 modsumfzodifsn 13958 addmodlteq 13960 cshwidxm1 14810 cshimadifsn0 14834 fzomaxdiflem 15342 fzo0dvdseq 16320 fzocongeq 16321 addmodlteqALT 16322 efgsp1 19731 efgsres 19732 crctcshwlkn0lem2 29742 crctcshwlkn0lem3 29743 crctcshwlkn0lem5 29745 crctcshwlkn0lem6 29746 crctcshwlkn0 29752 crctcsh 29755 eucrctshift 30173 eucrct2eupth 30175 fzssfzo 34398 signsvfn 34441 elfzolem1 44972 dvnmul 45600 iblspltprt 45630 stoweidlem3 45660 fourierdlem12 45776 fourierdlem50 45813 fourierdlem64 45827 fourierdlem79 45842 natglobalincr 46532 iccpartiltu 47030 iccpartgt 47035 bgoldbtbndlem2 47414 |
Copyright terms: Public domain | W3C validator |