![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4364 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
2 | fzof 13713 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
3 | 2 | fdmi 6758 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
4 | 3 | ndmov 7634 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
5 | 4 | necon1ai 2974 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
7 | 6 | simprd 495 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 𝒫 cpw 4622 × cxp 5698 (class class class)co 7448 ℤcz 12639 ..^cfzo 13711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-neg 11523 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 |
This theorem is referenced by: elfzoelz 13716 elfzo2 13719 elfzole1 13724 elfzolt2 13725 elfzolt3 13726 elfzolt2b 13727 elfzolt3b 13728 elfzop1le2 13729 fzonel 13730 elfzouz2 13731 fzonnsub 13741 fzoss1 13743 fzospliti 13748 fzodisj 13750 fzoaddel 13769 fzo0addelr 13771 elfzoext 13773 elincfzoext 13774 fzosubel 13775 fzoend 13807 ssfzo12 13809 fzoopth 13812 fzofzp1 13814 elfzo1elm1fzo0 13818 fzonfzoufzol 13820 elfznelfzob 13823 peano2fzor 13824 fzostep1 13833 modsumfzodifsn 13995 addmodlteq 13997 cshwidxm1 14855 cshimadifsn0 14879 fzomaxdiflem 15391 fzo0dvdseq 16371 fzocongeq 16372 addmodlteqALT 16373 efgsp1 19779 efgsres 19780 crctcshwlkn0lem2 29844 crctcshwlkn0lem3 29845 crctcshwlkn0lem5 29847 crctcshwlkn0lem6 29848 crctcshwlkn0 29854 crctcsh 29857 eucrctshift 30275 eucrct2eupth 30277 fzssfzo 34516 signsvfn 34559 elfzolem1 45236 dvnmul 45864 iblspltprt 45894 stoweidlem3 45924 fourierdlem12 46040 fourierdlem50 46077 fourierdlem64 46091 fourierdlem79 46106 natglobalincr 46796 iccpartiltu 47296 iccpartgt 47301 bgoldbtbndlem2 47680 |
Copyright terms: Public domain | W3C validator |