Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4268 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
2 | fzof 13384 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
3 | 2 | fdmi 6612 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
4 | 3 | ndmov 7456 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
5 | 4 | necon1ai 2971 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
7 | 6 | simprd 496 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 𝒫 cpw 4533 × cxp 5587 (class class class)co 7275 ℤcz 12319 ..^cfzo 13382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-neg 11208 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 |
This theorem is referenced by: elfzoelz 13387 elfzo2 13390 elfzole1 13395 elfzolt2 13396 elfzolt3 13397 elfzolt2b 13398 elfzolt3b 13399 elfzop1le2 13400 fzonel 13401 elfzouz2 13402 fzonnsub 13412 fzoss1 13414 fzospliti 13419 fzodisj 13421 fzoaddel 13440 fzo0addelr 13442 elfzoext 13444 elincfzoext 13445 fzosubel 13446 fzoend 13478 ssfzo12 13480 fzofzp1 13484 elfzo1elm1fzo0 13488 fzonfzoufzol 13490 elfznelfzob 13493 peano2fzor 13494 fzostep1 13503 modsumfzodifsn 13664 addmodlteq 13666 cshwidxm1 14520 cshimadifsn0 14543 fzomaxdiflem 15054 fzo0dvdseq 16032 fzocongeq 16033 addmodlteqALT 16034 efgsp1 19343 efgsres 19344 crctcshwlkn0lem2 28176 crctcshwlkn0lem3 28177 crctcshwlkn0lem5 28179 crctcshwlkn0lem6 28180 crctcshwlkn0 28186 crctcsh 28189 eucrctshift 28607 eucrct2eupth 28609 fzssfzo 32518 signsvfn 32561 elfzolem1 42860 dvnmul 43484 iblspltprt 43514 stoweidlem3 43544 fourierdlem12 43660 fourierdlem50 43697 fourierdlem64 43711 fourierdlem79 43726 fzoopth 44819 iccpartiltu 44874 iccpartgt 44879 bgoldbtbndlem2 45258 natglobalincr 46512 |
Copyright terms: Public domain | W3C validator |