| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4304 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
| 2 | fzof 13617 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6699 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
| 4 | 3 | ndmov 7573 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
| 5 | 4 | necon1ai 2952 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 7 | 6 | simprd 495 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 𝒫 cpw 4563 × cxp 5636 (class class class)co 7387 ℤcz 12529 ..^cfzo 13615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-neg 11408 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 |
| This theorem is referenced by: elfzoelz 13620 elfzo2 13623 elfzole1 13628 elfzolt2 13629 elfzolt3 13630 elfzolt2b 13631 elfzolt3b 13632 elfzop1le2 13633 fzonel 13634 elfzouz2 13635 fzonnsub 13645 fzoss1 13647 fzospliti 13652 fzodisj 13654 elfzolem1 13665 elfzo0subge1 13666 elfzo0suble 13667 fzoaddel 13678 fzo0addelr 13680 elfzoextl 13682 elfzoext 13683 elincfzoext 13684 fzosubel 13685 fzoend 13718 ssfzo12 13720 fzoopth 13723 fzofzp1 13725 elfzo1elm1fzo0 13729 fzonfzoufzol 13731 elfznelfzob 13734 peano2fzor 13735 fzostep1 13744 modsumfzodifsn 13909 addmodlteq 13911 cshwidxm1 14772 cshimadifsn0 14796 fzomaxdiflem 15309 fzo0dvdseq 16293 fzocongeq 16294 addmodlteqALT 16295 efgsp1 19667 efgsres 19668 crctcshwlkn0lem2 29741 crctcshwlkn0lem3 29742 crctcshwlkn0lem5 29744 crctcshwlkn0lem6 29745 crctcshwlkn0 29751 crctcsh 29754 eucrctshift 30172 eucrct2eupth 30174 fzssfzo 34530 signsvfn 34573 dvnmul 45941 iblspltprt 45971 stoweidlem3 46001 fourierdlem12 46117 fourierdlem50 46154 fourierdlem64 46168 fourierdlem79 46183 ormkglobd 46873 natglobalincr 46875 submodlt 47351 iccpartiltu 47423 iccpartgt 47428 bgoldbtbndlem2 47807 gpgedgvtx1 48053 |
| Copyright terms: Public domain | W3C validator |