![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvferm | Structured version Visualization version GIF version |
Description: Fermat's theorem on stationary points. A point 𝑈 which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
dvferm.a | ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
dvferm.b | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
dvferm.u | ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) |
dvferm.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) |
dvferm.d | ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) |
dvferm.r | ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
Ref | Expression |
---|---|
dvferm | ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvferm.a | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) | |
2 | dvferm.b | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
3 | dvferm.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) | |
4 | dvferm.s | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) | |
5 | dvferm.d | . . 3 ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) | |
6 | ne0i 4334 | . . . . . . 7 ⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) | |
7 | ndmioo 13386 | . . . . . . . 8 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅) | |
8 | 7 | necon1ai 2957 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
9 | 3, 6, 8 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
10 | 9 | simpld 493 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
11 | ioossre 13420 | . . . . . . . 8 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
12 | 11, 3 | sselid 3974 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
13 | 12 | rexrd 11296 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ ℝ*) |
14 | eliooord 13418 | . . . . . . . 8 ⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) | |
15 | 3, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) |
16 | 15 | simpld 493 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝑈) |
17 | 10, 13, 16 | xrltled 13164 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝑈) |
18 | iooss1 13394 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
19 | 10, 17, 18 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) |
20 | dvferm.r | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) | |
21 | ssralv 4045 | . . . 4 ⊢ ((𝑈(,)𝐵) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈) → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈))) | |
22 | 19, 20, 21 | sylc 65 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
23 | 1, 2, 3, 4, 5, 22 | dvferm1 25961 | . 2 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ≤ 0) |
24 | 9 | simprd 494 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
25 | 15 | simprd 494 | . . . . . 6 ⊢ (𝜑 → 𝑈 < 𝐵) |
26 | 13, 24, 25 | xrltled 13164 | . . . . 5 ⊢ (𝜑 → 𝑈 ≤ 𝐵) |
27 | iooss2 13395 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑈 ≤ 𝐵) → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵)) | |
28 | 24, 26, 27 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵)) |
29 | ssralv 4045 | . . . 4 ⊢ ((𝐴(,)𝑈) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈) → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈))) | |
30 | 28, 20, 29 | sylc 65 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
31 | 1, 2, 3, 4, 5, 30 | dvferm2 25963 | . 2 ⊢ (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈)) |
32 | dvfre 25927 | . . . . 5 ⊢ ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) | |
33 | 1, 2, 32 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
34 | 33, 5 | ffvelcdmd 7094 | . . 3 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ) |
35 | 0re 11248 | . . 3 ⊢ 0 ∈ ℝ | |
36 | letri3 11331 | . . 3 ⊢ ((((ℝ D 𝐹)‘𝑈) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈)))) | |
37 | 34, 35, 36 | sylancl 584 | . 2 ⊢ (𝜑 → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈)))) |
38 | 23, 31, 37 | mpbir2and 711 | 1 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∀wral 3050 ⊆ wss 3944 ∅c0 4322 class class class wbr 5149 dom cdm 5678 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ℝcr 11139 0cc0 11140 ℝ*cxr 11279 < clt 11280 ≤ cle 11281 (,)cioo 13359 D cdv 25836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9436 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-ioo 13363 df-icc 13366 df-fz 13520 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-struct 17119 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-starv 17251 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-rest 17407 df-topn 17408 df-topgen 17428 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22840 df-topon 22857 df-topsp 22879 df-bases 22893 df-cld 22967 df-ntr 22968 df-cls 22969 df-nei 23046 df-lp 23084 df-perf 23085 df-cn 23175 df-cnp 23176 df-haus 23263 df-fil 23794 df-fm 23886 df-flim 23887 df-flf 23888 df-xms 24270 df-ms 24271 df-cncf 24842 df-limc 25839 df-dv 25840 |
This theorem is referenced by: rollelem 25965 dvivthlem1 25985 |
Copyright terms: Public domain | W3C validator |