![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvferm | Structured version Visualization version GIF version |
Description: Fermat's theorem on stationary points. A point π which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
dvferm.a | β’ (π β πΉ:πβΆβ) |
dvferm.b | β’ (π β π β β) |
dvferm.u | β’ (π β π β (π΄(,)π΅)) |
dvferm.s | β’ (π β (π΄(,)π΅) β π) |
dvferm.d | β’ (π β π β dom (β D πΉ)) |
dvferm.r | β’ (π β βπ¦ β (π΄(,)π΅)(πΉβπ¦) β€ (πΉβπ)) |
Ref | Expression |
---|---|
dvferm | β’ (π β ((β D πΉ)βπ) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvferm.a | . . 3 β’ (π β πΉ:πβΆβ) | |
2 | dvferm.b | . . 3 β’ (π β π β β) | |
3 | dvferm.u | . . 3 β’ (π β π β (π΄(,)π΅)) | |
4 | dvferm.s | . . 3 β’ (π β (π΄(,)π΅) β π) | |
5 | dvferm.d | . . 3 β’ (π β π β dom (β D πΉ)) | |
6 | ne0i 4333 | . . . . . . 7 β’ (π β (π΄(,)π΅) β (π΄(,)π΅) β β ) | |
7 | ndmioo 13355 | . . . . . . . 8 β’ (Β¬ (π΄ β β* β§ π΅ β β*) β (π΄(,)π΅) = β ) | |
8 | 7 | necon1ai 2966 | . . . . . . 7 β’ ((π΄(,)π΅) β β β (π΄ β β* β§ π΅ β β*)) |
9 | 3, 6, 8 | 3syl 18 | . . . . . 6 β’ (π β (π΄ β β* β§ π΅ β β*)) |
10 | 9 | simpld 493 | . . . . 5 β’ (π β π΄ β β*) |
11 | ioossre 13389 | . . . . . . . 8 β’ (π΄(,)π΅) β β | |
12 | 11, 3 | sselid 3979 | . . . . . . 7 β’ (π β π β β) |
13 | 12 | rexrd 11268 | . . . . . 6 β’ (π β π β β*) |
14 | eliooord 13387 | . . . . . . . 8 β’ (π β (π΄(,)π΅) β (π΄ < π β§ π < π΅)) | |
15 | 3, 14 | syl 17 | . . . . . . 7 β’ (π β (π΄ < π β§ π < π΅)) |
16 | 15 | simpld 493 | . . . . . 6 β’ (π β π΄ < π) |
17 | 10, 13, 16 | xrltled 13133 | . . . . 5 β’ (π β π΄ β€ π) |
18 | iooss1 13363 | . . . . 5 β’ ((π΄ β β* β§ π΄ β€ π) β (π(,)π΅) β (π΄(,)π΅)) | |
19 | 10, 17, 18 | syl2anc 582 | . . . 4 β’ (π β (π(,)π΅) β (π΄(,)π΅)) |
20 | dvferm.r | . . . 4 β’ (π β βπ¦ β (π΄(,)π΅)(πΉβπ¦) β€ (πΉβπ)) | |
21 | ssralv 4049 | . . . 4 β’ ((π(,)π΅) β (π΄(,)π΅) β (βπ¦ β (π΄(,)π΅)(πΉβπ¦) β€ (πΉβπ) β βπ¦ β (π(,)π΅)(πΉβπ¦) β€ (πΉβπ))) | |
22 | 19, 20, 21 | sylc 65 | . . 3 β’ (π β βπ¦ β (π(,)π΅)(πΉβπ¦) β€ (πΉβπ)) |
23 | 1, 2, 3, 4, 5, 22 | dvferm1 25737 | . 2 β’ (π β ((β D πΉ)βπ) β€ 0) |
24 | 9 | simprd 494 | . . . . 5 β’ (π β π΅ β β*) |
25 | 15 | simprd 494 | . . . . . 6 β’ (π β π < π΅) |
26 | 13, 24, 25 | xrltled 13133 | . . . . 5 β’ (π β π β€ π΅) |
27 | iooss2 13364 | . . . . 5 β’ ((π΅ β β* β§ π β€ π΅) β (π΄(,)π) β (π΄(,)π΅)) | |
28 | 24, 26, 27 | syl2anc 582 | . . . 4 β’ (π β (π΄(,)π) β (π΄(,)π΅)) |
29 | ssralv 4049 | . . . 4 β’ ((π΄(,)π) β (π΄(,)π΅) β (βπ¦ β (π΄(,)π΅)(πΉβπ¦) β€ (πΉβπ) β βπ¦ β (π΄(,)π)(πΉβπ¦) β€ (πΉβπ))) | |
30 | 28, 20, 29 | sylc 65 | . . 3 β’ (π β βπ¦ β (π΄(,)π)(πΉβπ¦) β€ (πΉβπ)) |
31 | 1, 2, 3, 4, 5, 30 | dvferm2 25739 | . 2 β’ (π β 0 β€ ((β D πΉ)βπ)) |
32 | dvfre 25703 | . . . . 5 β’ ((πΉ:πβΆβ β§ π β β) β (β D πΉ):dom (β D πΉ)βΆβ) | |
33 | 1, 2, 32 | syl2anc 582 | . . . 4 β’ (π β (β D πΉ):dom (β D πΉ)βΆβ) |
34 | 33, 5 | ffvelcdmd 7086 | . . 3 β’ (π β ((β D πΉ)βπ) β β) |
35 | 0re 11220 | . . 3 β’ 0 β β | |
36 | letri3 11303 | . . 3 β’ ((((β D πΉ)βπ) β β β§ 0 β β) β (((β D πΉ)βπ) = 0 β (((β D πΉ)βπ) β€ 0 β§ 0 β€ ((β D πΉ)βπ)))) | |
37 | 34, 35, 36 | sylancl 584 | . 2 β’ (π β (((β D πΉ)βπ) = 0 β (((β D πΉ)βπ) β€ 0 β§ 0 β€ ((β D πΉ)βπ)))) |
38 | 23, 31, 37 | mpbir2and 709 | 1 β’ (π β ((β D πΉ)βπ) = 0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 β wne 2938 βwral 3059 β wss 3947 β c0 4321 class class class wbr 5147 dom cdm 5675 βΆwf 6538 βcfv 6542 (class class class)co 7411 βcr 11111 0cc0 11112 β*cxr 11251 < clt 11252 β€ cle 11253 (,)cioo 13328 D cdv 25612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fi 9408 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-icc 13335 df-fz 13489 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-starv 17216 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-rest 17372 df-topn 17373 df-topgen 17393 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-fbas 21141 df-fg 21142 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-lp 22860 df-perf 22861 df-cn 22951 df-cnp 22952 df-haus 23039 df-fil 23570 df-fm 23662 df-flim 23663 df-flf 23664 df-xms 24046 df-ms 24047 df-cncf 24618 df-limc 25615 df-dv 25616 |
This theorem is referenced by: rollelem 25741 dvivthlem1 25760 |
Copyright terms: Public domain | W3C validator |