MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm Structured version   Visualization version   GIF version

Theorem dvferm 25964
Description: Fermat's theorem on stationary points. A point 𝑈 which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm.r (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
Assertion
Ref Expression
dvferm (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑈   𝑦,𝑋   𝜑,𝑦

Proof of Theorem dvferm
StepHypRef Expression
1 dvferm.a . . 3 (𝜑𝐹:𝑋⟶ℝ)
2 dvferm.b . . 3 (𝜑𝑋 ⊆ ℝ)
3 dvferm.u . . 3 (𝜑𝑈 ∈ (𝐴(,)𝐵))
4 dvferm.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
5 dvferm.d . . 3 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
6 ne0i 4334 . . . . . . 7 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
7 ndmioo 13386 . . . . . . . 8 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
87necon1ai 2957 . . . . . . 7 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
93, 6, 83syl 18 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
109simpld 493 . . . . 5 (𝜑𝐴 ∈ ℝ*)
11 ioossre 13420 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
1211, 3sselid 3974 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
1312rexrd 11296 . . . . . 6 (𝜑𝑈 ∈ ℝ*)
14 eliooord 13418 . . . . . . . 8 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈𝑈 < 𝐵))
153, 14syl 17 . . . . . . 7 (𝜑 → (𝐴 < 𝑈𝑈 < 𝐵))
1615simpld 493 . . . . . 6 (𝜑𝐴 < 𝑈)
1710, 13, 16xrltled 13164 . . . . 5 (𝜑𝐴𝑈)
18 iooss1 13394 . . . . 5 ((𝐴 ∈ ℝ*𝐴𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
1910, 17, 18syl2anc 582 . . . 4 (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
20 dvferm.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
21 ssralv 4045 . . . 4 ((𝑈(,)𝐵) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈) → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈)))
2219, 20, 21sylc 65 . . 3 (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
231, 2, 3, 4, 5, 22dvferm1 25961 . 2 (𝜑 → ((ℝ D 𝐹)‘𝑈) ≤ 0)
249simprd 494 . . . . 5 (𝜑𝐵 ∈ ℝ*)
2515simprd 494 . . . . . 6 (𝜑𝑈 < 𝐵)
2613, 24, 25xrltled 13164 . . . . 5 (𝜑𝑈𝐵)
27 iooss2 13395 . . . . 5 ((𝐵 ∈ ℝ*𝑈𝐵) → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵))
2824, 26, 27syl2anc 582 . . . 4 (𝜑 → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵))
29 ssralv 4045 . . . 4 ((𝐴(,)𝑈) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈) → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈)))
3028, 20, 29sylc 65 . . 3 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
311, 2, 3, 4, 5, 30dvferm2 25963 . 2 (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈))
32 dvfre 25927 . . . . 5 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
331, 2, 32syl2anc 582 . . . 4 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
3433, 5ffvelcdmd 7094 . . 3 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
35 0re 11248 . . 3 0 ∈ ℝ
36 letri3 11331 . . 3 ((((ℝ D 𝐹)‘𝑈) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈))))
3734, 35, 36sylancl 584 . 2 (𝜑 → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈))))
3823, 31, 37mpbir2and 711 1 (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929  wral 3050  wss 3944  c0 4322   class class class wbr 5149  dom cdm 5678  wf 6545  cfv 6549  (class class class)co 7419  cr 11139  0cc0 11140  *cxr 11279   < clt 11280  cle 11281  (,)cioo 13359   D cdv 25836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9436  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-icc 13366  df-fz 13520  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-struct 17119  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-mulr 17250  df-starv 17251  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-rest 17407  df-topn 17408  df-topgen 17428  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-cncf 24842  df-limc 25839  df-dv 25840
This theorem is referenced by:  rollelem  25965  dvivthlem1  25985
  Copyright terms: Public domain W3C validator