| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvferm | Structured version Visualization version GIF version | ||
| Description: Fermat's theorem on stationary points. A point 𝑈 which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| Ref | Expression |
|---|---|
| dvferm.a | ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| dvferm.b | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
| dvferm.u | ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) |
| dvferm.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) |
| dvferm.d | ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) |
| dvferm.r | ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
| Ref | Expression |
|---|---|
| dvferm | ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvferm.a | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) | |
| 2 | dvferm.b | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
| 3 | dvferm.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) | |
| 4 | dvferm.s | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) | |
| 5 | dvferm.d | . . 3 ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) | |
| 6 | ne0i 4300 | . . . . . . 7 ⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) | |
| 7 | ndmioo 13309 | . . . . . . . 8 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅) | |
| 8 | 7 | necon1ai 2952 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
| 9 | 3, 6, 8 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
| 10 | 9 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 11 | ioossre 13344 | . . . . . . . 8 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
| 12 | 11, 3 | sselid 3941 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 13 | 12 | rexrd 11200 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ ℝ*) |
| 14 | eliooord 13342 | . . . . . . . 8 ⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) | |
| 15 | 3, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) |
| 16 | 15 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝑈) |
| 17 | 10, 13, 16 | xrltled 13086 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝑈) |
| 18 | iooss1 13317 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
| 19 | 10, 17, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) |
| 20 | dvferm.r | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) | |
| 21 | ssralv 4012 | . . . 4 ⊢ ((𝑈(,)𝐵) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈) → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈))) | |
| 22 | 19, 20, 21 | sylc 65 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
| 23 | 1, 2, 3, 4, 5, 22 | dvferm1 25865 | . 2 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ≤ 0) |
| 24 | 9 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 25 | 15 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝑈 < 𝐵) |
| 26 | 13, 24, 25 | xrltled 13086 | . . . . 5 ⊢ (𝜑 → 𝑈 ≤ 𝐵) |
| 27 | iooss2 13318 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑈 ≤ 𝐵) → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵)) | |
| 28 | 24, 26, 27 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵)) |
| 29 | ssralv 4012 | . . . 4 ⊢ ((𝐴(,)𝑈) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈) → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈))) | |
| 30 | 28, 20, 29 | sylc 65 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
| 31 | 1, 2, 3, 4, 5, 30 | dvferm2 25867 | . 2 ⊢ (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈)) |
| 32 | dvfre 25831 | . . . . 5 ⊢ ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) | |
| 33 | 1, 2, 32 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
| 34 | 33, 5 | ffvelcdmd 7039 | . . 3 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ) |
| 35 | 0re 11152 | . . 3 ⊢ 0 ∈ ℝ | |
| 36 | letri3 11235 | . . 3 ⊢ ((((ℝ D 𝐹)‘𝑈) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈)))) | |
| 37 | 34, 35, 36 | sylancl 586 | . 2 ⊢ (𝜑 → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈)))) |
| 38 | 23, 31, 37 | mpbir2and 713 | 1 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 dom cdm 5631 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 (,)cioo 13282 D cdv 25740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-icc 13289 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17361 df-topn 17362 df-topgen 17382 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-lp 22999 df-perf 23000 df-cn 23090 df-cnp 23091 df-haus 23178 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-xms 24184 df-ms 24185 df-cncf 24747 df-limc 25743 df-dv 25744 |
| This theorem is referenced by: rollelem 25869 dvivthlem1 25889 |
| Copyright terms: Public domain | W3C validator |