Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvferm | Structured version Visualization version GIF version |
Description: Fermat's theorem on stationary points. A point 𝑈 which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
dvferm.a | ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
dvferm.b | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
dvferm.u | ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) |
dvferm.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) |
dvferm.d | ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) |
dvferm.r | ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
Ref | Expression |
---|---|
dvferm | ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvferm.a | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) | |
2 | dvferm.b | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
3 | dvferm.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) | |
4 | dvferm.s | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) | |
5 | dvferm.d | . . 3 ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) | |
6 | ne0i 4265 | . . . . . . 7 ⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) | |
7 | ndmioo 13035 | . . . . . . . 8 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅) | |
8 | 7 | necon1ai 2970 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
9 | 3, 6, 8 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
10 | 9 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
11 | ioossre 13069 | . . . . . . . 8 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
12 | 11, 3 | sselid 3915 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
13 | 12 | rexrd 10956 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ ℝ*) |
14 | eliooord 13067 | . . . . . . . 8 ⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) | |
15 | 3, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) |
16 | 15 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝑈) |
17 | 10, 13, 16 | xrltled 12813 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝑈) |
18 | iooss1 13043 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
19 | 10, 17, 18 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) |
20 | dvferm.r | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) | |
21 | ssralv 3983 | . . . 4 ⊢ ((𝑈(,)𝐵) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈) → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈))) | |
22 | 19, 20, 21 | sylc 65 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
23 | 1, 2, 3, 4, 5, 22 | dvferm1 25054 | . 2 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ≤ 0) |
24 | 9 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
25 | 15 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝑈 < 𝐵) |
26 | 13, 24, 25 | xrltled 12813 | . . . . 5 ⊢ (𝜑 → 𝑈 ≤ 𝐵) |
27 | iooss2 13044 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑈 ≤ 𝐵) → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵)) | |
28 | 24, 26, 27 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵)) |
29 | ssralv 3983 | . . . 4 ⊢ ((𝐴(,)𝑈) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈) → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈))) | |
30 | 28, 20, 29 | sylc 65 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
31 | 1, 2, 3, 4, 5, 30 | dvferm2 25056 | . 2 ⊢ (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈)) |
32 | dvfre 25020 | . . . . 5 ⊢ ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) | |
33 | 1, 2, 32 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
34 | 33, 5 | ffvelrnd 6944 | . . 3 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ) |
35 | 0re 10908 | . . 3 ⊢ 0 ∈ ℝ | |
36 | letri3 10991 | . . 3 ⊢ ((((ℝ D 𝐹)‘𝑈) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈)))) | |
37 | 34, 35, 36 | sylancl 585 | . 2 ⊢ (𝜑 → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈)))) |
38 | 23, 31, 37 | mpbir2and 709 | 1 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 (,)cioo 13008 D cdv 24932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-icc 13015 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-topn 17051 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-cncf 23947 df-limc 24935 df-dv 24936 |
This theorem is referenced by: rollelem 25058 dvivthlem1 25077 |
Copyright terms: Public domain | W3C validator |