MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1termlem Structured version   Visualization version   GIF version

Theorem coe1termlem 24855
Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
coe1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
coe1termlem ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑧,𝑛)

Proof of Theorem coe1termlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ssid 3937 . . . 4 ℂ ⊆ ℂ
2 coe1term.1 . . . . 5 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
32ply1term 24801 . . . 4 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
41, 3mp3an1 1445 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
5 simpr 488 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
6 simpl 486 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
7 0cn 10622 . . . . . 6 0 ∈ ℂ
8 ifcl 4469 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
96, 7, 8sylancl 589 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
109adantr 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
1110fmpttd 6856 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
12 eqid 2798 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))
13 eqeq1 2802 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 = 𝑁𝑘 = 𝑁))
1413ifbid 4447 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 = 𝑁, 𝐴, 0) = if(𝑘 = 𝑁, 𝐴, 0))
15 simpr 488 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
16 ifcl 4469 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
176, 7, 16sylancl 589 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
1817adantr 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
1912, 14, 15, 18fvmptd3 6768 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 = 𝑁, 𝐴, 0))
2019neeq1d 3046 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘 = 𝑁, 𝐴, 0) ≠ 0))
21 nn0re 11894 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2221leidd 11195 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁𝑁)
2322ad2antlr 726 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑁𝑁)
24 iffalse 4434 . . . . . . . . 9 𝑘 = 𝑁 → if(𝑘 = 𝑁, 𝐴, 0) = 0)
2524necon1ai 3014 . . . . . . . 8 (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → 𝑘 = 𝑁)
2625breq1d 5040 . . . . . . 7 (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → (𝑘𝑁𝑁𝑁))
2723, 26syl5ibrcom 250 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → 𝑘𝑁))
2820, 27sylbid 243 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
2928ralrimiva 3149 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
30 plyco0 24789 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)))
315, 11, 30syl2anc 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)))
3229, 31mpbird 260 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
332ply1termlem 24800 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
34 elfznn0 12995 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
3519oveq1d 7150 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3634, 35sylan2 595 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3736sumeq2dv 15052 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3837mpteq2dv 5126 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
3933, 38eqtr4d 2836 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))))
404, 5, 11, 32, 39coeeq 24824 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)))
414adantr 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐹 ∈ (Poly‘ℂ))
425adantr 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ0)
4311adantr 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
4432adantr 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
4539adantr 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))))
46 iftrue 4431 . . . . . . . 8 (𝑛 = 𝑁 → if(𝑛 = 𝑁, 𝐴, 0) = 𝐴)
4746, 12fvmptg 6743 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) = 𝐴)
4847ancoms 462 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) = 𝐴)
4948neeq1d 3046 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) ≠ 0 ↔ 𝐴 ≠ 0))
5049biimpar 481 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) ≠ 0)
5141, 42, 43, 44, 45, 50dgreq 24841 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (deg‘𝐹) = 𝑁)
5251ex 416 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁))
5340, 52jca 515 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wss 3881  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cle 10665  0cn0 11885  cuz 12231  ...cfz 12885  cexp 13425  Σcsu 15034  Polycply 24781  coeffccoe 24783  degcdgr 24784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-0p 24274  df-ply 24785  df-coe 24787  df-dgr 24788
This theorem is referenced by:  coe1term  24856  dgr1term  24857
  Copyright terms: Public domain W3C validator