MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1termlem Structured version   Visualization version   GIF version

Theorem coe1termlem 26188
Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
coe1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
coe1termlem ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑧,𝑛)

Proof of Theorem coe1termlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ssid 3957 . . . 4 ℂ ⊆ ℂ
2 coe1term.1 . . . . 5 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
32ply1term 26134 . . . 4 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
41, 3mp3an1 1450 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
5 simpr 484 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
6 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
7 0cn 11101 . . . . . 6 0 ∈ ℂ
8 ifcl 4521 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
96, 7, 8sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
109adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
1110fmpttd 7048 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
12 eqid 2731 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))
13 eqeq1 2735 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 = 𝑁𝑘 = 𝑁))
1413ifbid 4499 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 = 𝑁, 𝐴, 0) = if(𝑘 = 𝑁, 𝐴, 0))
15 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
16 ifcl 4521 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
176, 7, 16sylancl 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
1817adantr 480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
1912, 14, 15, 18fvmptd3 6952 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 = 𝑁, 𝐴, 0))
2019neeq1d 2987 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘 = 𝑁, 𝐴, 0) ≠ 0))
21 nn0re 12387 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2221leidd 11680 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁𝑁)
2322ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑁𝑁)
24 iffalse 4484 . . . . . . . . 9 𝑘 = 𝑁 → if(𝑘 = 𝑁, 𝐴, 0) = 0)
2524necon1ai 2955 . . . . . . . 8 (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → 𝑘 = 𝑁)
2625breq1d 5101 . . . . . . 7 (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → (𝑘𝑁𝑁𝑁))
2723, 26syl5ibrcom 247 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → 𝑘𝑁))
2820, 27sylbid 240 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
2928ralrimiva 3124 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
30 plyco0 26122 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)))
315, 11, 30syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)))
3229, 31mpbird 257 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
332ply1termlem 26133 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
34 elfznn0 13517 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
3519oveq1d 7361 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3634, 35sylan2 593 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3736sumeq2dv 15606 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3837mpteq2dv 5185 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
3933, 38eqtr4d 2769 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))))
404, 5, 11, 32, 39coeeq 26157 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)))
414adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐹 ∈ (Poly‘ℂ))
425adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ0)
4311adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
4432adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
4539adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))))
46 iftrue 4481 . . . . . . . 8 (𝑛 = 𝑁 → if(𝑛 = 𝑁, 𝐴, 0) = 𝐴)
4746, 12fvmptg 6927 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) = 𝐴)
4847ancoms 458 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) = 𝐴)
4948neeq1d 2987 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) ≠ 0 ↔ 𝐴 ≠ 0))
5049biimpar 477 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) ≠ 0)
5141, 42, 43, 44, 45, 50dgreq 26174 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (deg‘𝐹) = 𝑁)
5251ex 412 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁))
5340, 52jca 511 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wss 3902  ifcif 4475  {csn 4576   class class class wbr 5091  cmpt 5172  cima 5619  wf 6477  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  cle 11144  0cn0 12378  cuz 12729  ...cfz 13404  cexp 13965  Σcsu 15590  Polycply 26114  coeffccoe 26116  degcdgr 26117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-rlim 15393  df-sum 15591  df-0p 25596  df-ply 26118  df-coe 26120  df-dgr 26121
This theorem is referenced by:  coe1term  26189  dgr1term  26190
  Copyright terms: Public domain W3C validator