MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1termlem Structured version   Visualization version   GIF version

Theorem coe1termlem 26170
Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
coe1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
coe1termlem ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑧,𝑛)

Proof of Theorem coe1termlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ssid 3972 . . . 4 ℂ ⊆ ℂ
2 coe1term.1 . . . . 5 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
32ply1term 26116 . . . 4 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
41, 3mp3an1 1450 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
5 simpr 484 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
6 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
7 0cn 11173 . . . . . 6 0 ∈ ℂ
8 ifcl 4537 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
96, 7, 8sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
109adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
1110fmpttd 7090 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
12 eqid 2730 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))
13 eqeq1 2734 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 = 𝑁𝑘 = 𝑁))
1413ifbid 4515 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 = 𝑁, 𝐴, 0) = if(𝑘 = 𝑁, 𝐴, 0))
15 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
16 ifcl 4537 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
176, 7, 16sylancl 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
1817adantr 480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
1912, 14, 15, 18fvmptd3 6994 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 = 𝑁, 𝐴, 0))
2019neeq1d 2985 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘 = 𝑁, 𝐴, 0) ≠ 0))
21 nn0re 12458 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2221leidd 11751 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁𝑁)
2322ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑁𝑁)
24 iffalse 4500 . . . . . . . . 9 𝑘 = 𝑁 → if(𝑘 = 𝑁, 𝐴, 0) = 0)
2524necon1ai 2953 . . . . . . . 8 (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → 𝑘 = 𝑁)
2625breq1d 5120 . . . . . . 7 (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → (𝑘𝑁𝑁𝑁))
2723, 26syl5ibrcom 247 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → 𝑘𝑁))
2820, 27sylbid 240 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
2928ralrimiva 3126 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
30 plyco0 26104 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)))
315, 11, 30syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)))
3229, 31mpbird 257 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
332ply1termlem 26115 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
34 elfznn0 13588 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
3519oveq1d 7405 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3634, 35sylan2 593 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3736sumeq2dv 15675 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3837mpteq2dv 5204 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
3933, 38eqtr4d 2768 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))))
404, 5, 11, 32, 39coeeq 26139 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)))
414adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐹 ∈ (Poly‘ℂ))
425adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ0)
4311adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
4432adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
4539adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))))
46 iftrue 4497 . . . . . . . 8 (𝑛 = 𝑁 → if(𝑛 = 𝑁, 𝐴, 0) = 𝐴)
4746, 12fvmptg 6969 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) = 𝐴)
4847ancoms 458 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) = 𝐴)
4948neeq1d 2985 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) ≠ 0 ↔ 𝐴 ≠ 0))
5049biimpar 477 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) ≠ 0)
5141, 42, 43, 44, 45, 50dgreq 26156 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (deg‘𝐹) = 𝑁)
5251ex 412 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁))
5340, 52jca 511 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3917  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  0cn0 12449  cuz 12800  ...cfz 13475  cexp 14033  Σcsu 15659  Polycply 26096  coeffccoe 26098  degcdgr 26099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-coe 26102  df-dgr 26103
This theorem is referenced by:  coe1term  26171  dgr1term  26172
  Copyright terms: Public domain W3C validator