MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1termlem Structured version   Visualization version   GIF version

Theorem coe1termlem 26282
Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
coe1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
coe1termlem ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑧,𝑛)

Proof of Theorem coe1termlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ssid 4001 . . . 4 ℂ ⊆ ℂ
2 coe1term.1 . . . . 5 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
32ply1term 26228 . . . 4 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
41, 3mp3an1 1445 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
5 simpr 483 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
6 simpl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
7 0cn 11247 . . . . . 6 0 ∈ ℂ
8 ifcl 4568 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
96, 7, 8sylancl 584 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
109adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
1110fmpttd 7121 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
12 eqid 2726 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))
13 eqeq1 2730 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 = 𝑁𝑘 = 𝑁))
1413ifbid 4546 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 = 𝑁, 𝐴, 0) = if(𝑘 = 𝑁, 𝐴, 0))
15 simpr 483 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
16 ifcl 4568 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
176, 7, 16sylancl 584 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
1817adantr 479 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
1912, 14, 15, 18fvmptd3 7024 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 = 𝑁, 𝐴, 0))
2019neeq1d 2990 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘 = 𝑁, 𝐴, 0) ≠ 0))
21 nn0re 12527 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2221leidd 11821 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁𝑁)
2322ad2antlr 725 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑁𝑁)
24 iffalse 4532 . . . . . . . . 9 𝑘 = 𝑁 → if(𝑘 = 𝑁, 𝐴, 0) = 0)
2524necon1ai 2958 . . . . . . . 8 (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → 𝑘 = 𝑁)
2625breq1d 5155 . . . . . . 7 (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → (𝑘𝑁𝑁𝑁))
2723, 26syl5ibrcom 246 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → 𝑘𝑁))
2820, 27sylbid 239 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
2928ralrimiva 3136 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
30 plyco0 26216 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)))
315, 11, 30syl2anc 582 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)))
3229, 31mpbird 256 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
332ply1termlem 26227 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
34 elfznn0 13642 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
3519oveq1d 7431 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3634, 35sylan2 591 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3736sumeq2dv 15702 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3837mpteq2dv 5247 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
3933, 38eqtr4d 2769 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))))
404, 5, 11, 32, 39coeeq 26251 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)))
414adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐹 ∈ (Poly‘ℂ))
425adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ0)
4311adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
4432adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
4539adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))))
46 iftrue 4529 . . . . . . . 8 (𝑛 = 𝑁 → if(𝑛 = 𝑁, 𝐴, 0) = 𝐴)
4746, 12fvmptg 6999 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) = 𝐴)
4847ancoms 457 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) = 𝐴)
4948neeq1d 2990 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) ≠ 0 ↔ 𝐴 ≠ 0))
5049biimpar 476 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) ≠ 0)
5141, 42, 43, 44, 45, 50dgreq 26268 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (deg‘𝐹) = 𝑁)
5251ex 411 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁))
5340, 52jca 510 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  wss 3946  ifcif 4523  {csn 4623   class class class wbr 5145  cmpt 5228  cima 5677  wf 6542  cfv 6546  (class class class)co 7416  cc 11147  0cc0 11149  1c1 11150   + caddc 11152   · cmul 11154  cle 11290  0cn0 12518  cuz 12868  ...cfz 13532  cexp 14075  Σcsu 15685  Polycply 26208  coeffccoe 26210  degcdgr 26211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-map 8849  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-inf 9479  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-fz 13533  df-fzo 13676  df-fl 13806  df-seq 14016  df-exp 14076  df-hash 14343  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-clim 15485  df-rlim 15486  df-sum 15686  df-0p 25687  df-ply 26212  df-coe 26214  df-dgr 26215
This theorem is referenced by:  coe1term  26283  dgr1term  26284
  Copyright terms: Public domain W3C validator