Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbasd Structured version   Visualization version   GIF version

Theorem dchrelbasd 25416
 Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/nℤ to the multiplicative monoid of ℂ, which is zero off the group of units of ℤ/nℤ. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
dchrelbasd.1 (𝑘 = 𝑥𝑋 = 𝐴)
dchrelbasd.2 (𝑘 = 𝑦𝑋 = 𝐶)
dchrelbasd.3 (𝑘 = (𝑥(.r𝑍)𝑦) → 𝑋 = 𝐸)
dchrelbasd.4 (𝑘 = (1r𝑍) → 𝑋 = 𝑌)
dchrelbasd.5 ((𝜑𝑘𝑈) → 𝑋 ∈ ℂ)
dchrelbasd.6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 = (𝐴 · 𝐶))
dchrelbasd.7 (𝜑𝑌 = 1)
Assertion
Ref Expression
dchrelbasd (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷)
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑦,𝐵   𝑥,𝑁   𝑈,𝑘,𝑥,𝑦   𝐶,𝑘   𝑘,𝐸   𝜑,𝑘,𝑥,𝑦   𝑥,𝑋,𝑦   𝑘,𝑍,𝑥,𝑦   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑘)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑘)   𝑁(𝑦,𝑘)   𝑋(𝑘)   𝑌(𝑥,𝑦)

Proof of Theorem dchrelbasd
StepHypRef Expression
1 dchrelbasd.5 . . . . 5 ((𝜑𝑘𝑈) → 𝑋 ∈ ℂ)
21adantlr 705 . . . 4 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → 𝑋 ∈ ℂ)
3 0cnd 10369 . . . 4 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → 0 ∈ ℂ)
42, 3ifclda 4340 . . 3 ((𝜑𝑘𝐵) → if(𝑘𝑈, 𝑋, 0) ∈ ℂ)
54fmpttd 6649 . 2 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)):𝐵⟶ℂ)
6 dchrval.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76nnnn0d 11702 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
8 dchrval.z . . . . . . . . . 10 𝑍 = (ℤ/nℤ‘𝑁)
98zncrng 20288 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
10 crngring 18945 . . . . . . . . 9 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
117, 9, 103syl 18 . . . . . . . 8 (𝜑𝑍 ∈ Ring)
12 dchrval.u . . . . . . . . . 10 𝑈 = (Unit‘𝑍)
13 eqid 2777 . . . . . . . . . 10 (.r𝑍) = (.r𝑍)
1412, 13unitmulcl 19051 . . . . . . . . 9 ((𝑍 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
15143expb 1110 . . . . . . . 8 ((𝑍 ∈ Ring ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
1611, 15sylan 575 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
1716iftrued 4314 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = 𝐸)
18 dchrelbasd.6 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 = (𝐴 · 𝐶))
1917, 18eqtrd 2813 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = (𝐴 · 𝐶))
20 eqid 2777 . . . . . 6 (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) = (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))
21 eleq1 2846 . . . . . . 7 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑘𝑈 ↔ (𝑥(.r𝑍)𝑦) ∈ 𝑈))
22 dchrelbasd.3 . . . . . . 7 (𝑘 = (𝑥(.r𝑍)𝑦) → 𝑋 = 𝐸)
2321, 22ifbieq1d 4329 . . . . . 6 (𝑘 = (𝑥(.r𝑍)𝑦) → if(𝑘𝑈, 𝑋, 0) = if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0))
24 dchrval.b . . . . . . . 8 𝐵 = (Base‘𝑍)
2524, 12unitss 19047 . . . . . . 7 𝑈𝐵
2625, 16sseldi 3818 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
2722eleq1d 2843 . . . . . . . 8 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑋 ∈ ℂ ↔ 𝐸 ∈ ℂ))
281ralrimiva 3147 . . . . . . . . 9 (𝜑 → ∀𝑘𝑈 𝑋 ∈ ℂ)
2928adantr 474 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∀𝑘𝑈 𝑋 ∈ ℂ)
3027, 29, 16rspcdva 3516 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 ∈ ℂ)
3117, 30eqeltrd 2858 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) ∈ ℂ)
3220, 23, 26, 31fvmptd3 6564 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0))
33 eleq1 2846 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑘𝑈𝑥𝑈))
34 dchrelbasd.1 . . . . . . . . 9 (𝑘 = 𝑥𝑋 = 𝐴)
3533, 34ifbieq1d 4329 . . . . . . . 8 (𝑘 = 𝑥 → if(𝑘𝑈, 𝑋, 0) = if(𝑥𝑈, 𝐴, 0))
36 simprl 761 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
3725, 36sseldi 3818 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝐵)
38 iftrue 4312 . . . . . . . . . 10 (𝑥𝑈 → if(𝑥𝑈, 𝐴, 0) = 𝐴)
3938ad2antrl 718 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑥𝑈, 𝐴, 0) = 𝐴)
4034eleq1d 2843 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑋 ∈ ℂ ↔ 𝐴 ∈ ℂ))
4140, 29, 36rspcdva 3516 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐴 ∈ ℂ)
4239, 41eqeltrd 2858 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑥𝑈, 𝐴, 0) ∈ ℂ)
4320, 35, 37, 42fvmptd3 6564 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = if(𝑥𝑈, 𝐴, 0))
4443, 39eqtrd 2813 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = 𝐴)
45 eleq1 2846 . . . . . . . . 9 (𝑘 = 𝑦 → (𝑘𝑈𝑦𝑈))
46 dchrelbasd.2 . . . . . . . . 9 (𝑘 = 𝑦𝑋 = 𝐶)
4745, 46ifbieq1d 4329 . . . . . . . 8 (𝑘 = 𝑦 → if(𝑘𝑈, 𝑋, 0) = if(𝑦𝑈, 𝐶, 0))
48 simprr 763 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
4925, 48sseldi 3818 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝐵)
50 iftrue 4312 . . . . . . . . . 10 (𝑦𝑈 → if(𝑦𝑈, 𝐶, 0) = 𝐶)
5150ad2antll 719 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑦𝑈, 𝐶, 0) = 𝐶)
5246eleq1d 2843 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑋 ∈ ℂ ↔ 𝐶 ∈ ℂ))
5352, 29, 48rspcdva 3516 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐶 ∈ ℂ)
5451, 53eqeltrd 2858 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑦𝑈, 𝐶, 0) ∈ ℂ)
5520, 47, 49, 54fvmptd3 6564 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦) = if(𝑦𝑈, 𝐶, 0))
5655, 51eqtrd 2813 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦) = 𝐶)
5744, 56oveq12d 6940 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) = (𝐴 · 𝐶))
5819, 32, 573eqtr4d 2823 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)))
5958ralrimivva 3152 . . 3 (𝜑 → ∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)))
60 eleq1 2846 . . . . . 6 (𝑘 = (1r𝑍) → (𝑘𝑈 ↔ (1r𝑍) ∈ 𝑈))
61 dchrelbasd.4 . . . . . 6 (𝑘 = (1r𝑍) → 𝑋 = 𝑌)
6260, 61ifbieq1d 4329 . . . . 5 (𝑘 = (1r𝑍) → if(𝑘𝑈, 𝑋, 0) = if((1r𝑍) ∈ 𝑈, 𝑌, 0))
63 eqid 2777 . . . . . . . 8 (1r𝑍) = (1r𝑍)
6412, 631unit 19045 . . . . . . 7 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
6511, 64syl 17 . . . . . 6 (𝜑 → (1r𝑍) ∈ 𝑈)
6625, 65sseldi 3818 . . . . 5 (𝜑 → (1r𝑍) ∈ 𝐵)
6765iftrued 4314 . . . . . . 7 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) = 𝑌)
68 dchrelbasd.7 . . . . . . 7 (𝜑𝑌 = 1)
6967, 68eqtrd 2813 . . . . . 6 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) = 1)
70 ax-1cn 10330 . . . . . 6 1 ∈ ℂ
7169, 70syl6eqel 2866 . . . . 5 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) ∈ ℂ)
7220, 62, 66, 71fvmptd3 6564 . . . 4 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = if((1r𝑍) ∈ 𝑈, 𝑌, 0))
7372, 69eqtrd 2813 . . 3 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1)
74 simpr 479 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝐵)
7540rspcv 3506 . . . . . . . . . 10 (𝑥𝑈 → (∀𝑘𝑈 𝑋 ∈ ℂ → 𝐴 ∈ ℂ))
7628, 75mpan9 502 . . . . . . . . 9 ((𝜑𝑥𝑈) → 𝐴 ∈ ℂ)
7776adantlr 705 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑥𝑈) → 𝐴 ∈ ℂ)
78 0cnd 10369 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ ¬ 𝑥𝑈) → 0 ∈ ℂ)
7977, 78ifclda 4340 . . . . . . 7 ((𝜑𝑥𝐵) → if(𝑥𝑈, 𝐴, 0) ∈ ℂ)
8020, 35, 74, 79fvmptd3 6564 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = if(𝑥𝑈, 𝐴, 0))
8180neeq1d 3027 . . . . 5 ((𝜑𝑥𝐵) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 ↔ if(𝑥𝑈, 𝐴, 0) ≠ 0))
82 iffalse 4315 . . . . . 6 𝑥𝑈 → if(𝑥𝑈, 𝐴, 0) = 0)
8382necon1ai 2995 . . . . 5 (if(𝑥𝑈, 𝐴, 0) ≠ 0 → 𝑥𝑈)
8481, 83syl6bi 245 . . . 4 ((𝜑𝑥𝐵) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈))
8584ralrimiva 3147 . . 3 (𝜑 → ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈))
8659, 73, 853jca 1119 . 2 (𝜑 → (∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈)))
87 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
88 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
8987, 8, 24, 12, 6, 88dchrelbas3 25415 . 2 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷 ↔ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)):𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈)))))
905, 86, 89mpbir2and 703 1 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2106   ≠ wne 2968  ∀wral 3089  ifcif 4306   ↦ cmpt 4965  ⟶wf 6131  ‘cfv 6135  (class class class)co 6922  ℂcc 10270  0cc0 10272  1c1 10273   · cmul 10277  ℕcn 11374  ℕ0cn0 11642  Basecbs 16255  .rcmulr 16339  1rcur 18888  Ringcrg 18934  CRingccrg 18935  Unitcui 19026  ℤ/nℤczn 20247  DChrcdchr 25409 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-addf 10351  ax-mulf 10352 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-ec 8028  df-qs 8032  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-0g 16488  df-imas 16554  df-qus 16555  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-nsg 17976  df-eqg 17977  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-subrg 19170  df-lmod 19257  df-lss 19325  df-lsp 19367  df-sra 19569  df-rgmod 19570  df-lidl 19571  df-rsp 19572  df-2idl 19629  df-cnfld 20143  df-zring 20215  df-zn 20251  df-dchr 25410 This theorem is referenced by:  dchr1cl  25428  dchrinvcl  25430  dchrptlem2  25442
 Copyright terms: Public domain W3C validator