MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbasd Structured version   Visualization version   GIF version

Theorem dchrelbasd 25823
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
dchrelbasd.1 (𝑘 = 𝑥𝑋 = 𝐴)
dchrelbasd.2 (𝑘 = 𝑦𝑋 = 𝐶)
dchrelbasd.3 (𝑘 = (𝑥(.r𝑍)𝑦) → 𝑋 = 𝐸)
dchrelbasd.4 (𝑘 = (1r𝑍) → 𝑋 = 𝑌)
dchrelbasd.5 ((𝜑𝑘𝑈) → 𝑋 ∈ ℂ)
dchrelbasd.6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 = (𝐴 · 𝐶))
dchrelbasd.7 (𝜑𝑌 = 1)
Assertion
Ref Expression
dchrelbasd (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷)
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑦,𝐵   𝑥,𝑁   𝑈,𝑘,𝑥,𝑦   𝐶,𝑘   𝑘,𝐸   𝜑,𝑘,𝑥,𝑦   𝑥,𝑋,𝑦   𝑘,𝑍,𝑥,𝑦   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑘)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑘)   𝑁(𝑦,𝑘)   𝑋(𝑘)   𝑌(𝑥,𝑦)

Proof of Theorem dchrelbasd
StepHypRef Expression
1 dchrelbasd.5 . . . . 5 ((𝜑𝑘𝑈) → 𝑋 ∈ ℂ)
21adantlr 714 . . . 4 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → 𝑋 ∈ ℂ)
3 0cnd 10623 . . . 4 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → 0 ∈ ℂ)
42, 3ifclda 4459 . . 3 ((𝜑𝑘𝐵) → if(𝑘𝑈, 𝑋, 0) ∈ ℂ)
54fmpttd 6856 . 2 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)):𝐵⟶ℂ)
6 dchrval.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76nnnn0d 11943 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
8 dchrval.z . . . . . . . . . 10 𝑍 = (ℤ/nℤ‘𝑁)
98zncrng 20236 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
10 crngring 19302 . . . . . . . . 9 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
117, 9, 103syl 18 . . . . . . . 8 (𝜑𝑍 ∈ Ring)
12 dchrval.u . . . . . . . . . 10 𝑈 = (Unit‘𝑍)
13 eqid 2798 . . . . . . . . . 10 (.r𝑍) = (.r𝑍)
1412, 13unitmulcl 19410 . . . . . . . . 9 ((𝑍 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
15143expb 1117 . . . . . . . 8 ((𝑍 ∈ Ring ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
1611, 15sylan 583 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
1716iftrued 4433 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = 𝐸)
18 dchrelbasd.6 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 = (𝐴 · 𝐶))
1917, 18eqtrd 2833 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = (𝐴 · 𝐶))
20 eqid 2798 . . . . . 6 (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) = (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))
21 eleq1 2877 . . . . . . 7 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑘𝑈 ↔ (𝑥(.r𝑍)𝑦) ∈ 𝑈))
22 dchrelbasd.3 . . . . . . 7 (𝑘 = (𝑥(.r𝑍)𝑦) → 𝑋 = 𝐸)
2321, 22ifbieq1d 4448 . . . . . 6 (𝑘 = (𝑥(.r𝑍)𝑦) → if(𝑘𝑈, 𝑋, 0) = if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0))
24 dchrval.b . . . . . . . 8 𝐵 = (Base‘𝑍)
2524, 12unitss 19406 . . . . . . 7 𝑈𝐵
2625, 16sseldi 3913 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
2722eleq1d 2874 . . . . . . . 8 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑋 ∈ ℂ ↔ 𝐸 ∈ ℂ))
281ralrimiva 3149 . . . . . . . . 9 (𝜑 → ∀𝑘𝑈 𝑋 ∈ ℂ)
2928adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∀𝑘𝑈 𝑋 ∈ ℂ)
3027, 29, 16rspcdva 3573 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 ∈ ℂ)
3117, 30eqeltrd 2890 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) ∈ ℂ)
3220, 23, 26, 31fvmptd3 6768 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0))
33 eleq1 2877 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑘𝑈𝑥𝑈))
34 dchrelbasd.1 . . . . . . . . 9 (𝑘 = 𝑥𝑋 = 𝐴)
3533, 34ifbieq1d 4448 . . . . . . . 8 (𝑘 = 𝑥 → if(𝑘𝑈, 𝑋, 0) = if(𝑥𝑈, 𝐴, 0))
36 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
3725, 36sseldi 3913 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝐵)
38 iftrue 4431 . . . . . . . . . 10 (𝑥𝑈 → if(𝑥𝑈, 𝐴, 0) = 𝐴)
3938ad2antrl 727 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑥𝑈, 𝐴, 0) = 𝐴)
4034eleq1d 2874 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑋 ∈ ℂ ↔ 𝐴 ∈ ℂ))
4140, 29, 36rspcdva 3573 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐴 ∈ ℂ)
4239, 41eqeltrd 2890 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑥𝑈, 𝐴, 0) ∈ ℂ)
4320, 35, 37, 42fvmptd3 6768 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = if(𝑥𝑈, 𝐴, 0))
4443, 39eqtrd 2833 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = 𝐴)
45 eleq1 2877 . . . . . . . . 9 (𝑘 = 𝑦 → (𝑘𝑈𝑦𝑈))
46 dchrelbasd.2 . . . . . . . . 9 (𝑘 = 𝑦𝑋 = 𝐶)
4745, 46ifbieq1d 4448 . . . . . . . 8 (𝑘 = 𝑦 → if(𝑘𝑈, 𝑋, 0) = if(𝑦𝑈, 𝐶, 0))
48 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
4925, 48sseldi 3913 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝐵)
50 iftrue 4431 . . . . . . . . . 10 (𝑦𝑈 → if(𝑦𝑈, 𝐶, 0) = 𝐶)
5150ad2antll 728 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑦𝑈, 𝐶, 0) = 𝐶)
5246eleq1d 2874 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑋 ∈ ℂ ↔ 𝐶 ∈ ℂ))
5352, 29, 48rspcdva 3573 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐶 ∈ ℂ)
5451, 53eqeltrd 2890 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑦𝑈, 𝐶, 0) ∈ ℂ)
5520, 47, 49, 54fvmptd3 6768 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦) = if(𝑦𝑈, 𝐶, 0))
5655, 51eqtrd 2833 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦) = 𝐶)
5744, 56oveq12d 7153 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) = (𝐴 · 𝐶))
5819, 32, 573eqtr4d 2843 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)))
5958ralrimivva 3156 . . 3 (𝜑 → ∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)))
60 eleq1 2877 . . . . . 6 (𝑘 = (1r𝑍) → (𝑘𝑈 ↔ (1r𝑍) ∈ 𝑈))
61 dchrelbasd.4 . . . . . 6 (𝑘 = (1r𝑍) → 𝑋 = 𝑌)
6260, 61ifbieq1d 4448 . . . . 5 (𝑘 = (1r𝑍) → if(𝑘𝑈, 𝑋, 0) = if((1r𝑍) ∈ 𝑈, 𝑌, 0))
63 eqid 2798 . . . . . . . 8 (1r𝑍) = (1r𝑍)
6412, 631unit 19404 . . . . . . 7 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
6511, 64syl 17 . . . . . 6 (𝜑 → (1r𝑍) ∈ 𝑈)
6625, 65sseldi 3913 . . . . 5 (𝜑 → (1r𝑍) ∈ 𝐵)
6765iftrued 4433 . . . . . . 7 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) = 𝑌)
68 dchrelbasd.7 . . . . . . 7 (𝜑𝑌 = 1)
6967, 68eqtrd 2833 . . . . . 6 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) = 1)
70 ax-1cn 10584 . . . . . 6 1 ∈ ℂ
7169, 70eqeltrdi 2898 . . . . 5 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) ∈ ℂ)
7220, 62, 66, 71fvmptd3 6768 . . . 4 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = if((1r𝑍) ∈ 𝑈, 𝑌, 0))
7372, 69eqtrd 2833 . . 3 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1)
74 simpr 488 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝐵)
7540rspcv 3566 . . . . . . . . . 10 (𝑥𝑈 → (∀𝑘𝑈 𝑋 ∈ ℂ → 𝐴 ∈ ℂ))
7628, 75mpan9 510 . . . . . . . . 9 ((𝜑𝑥𝑈) → 𝐴 ∈ ℂ)
7776adantlr 714 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑥𝑈) → 𝐴 ∈ ℂ)
78 0cnd 10623 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ ¬ 𝑥𝑈) → 0 ∈ ℂ)
7977, 78ifclda 4459 . . . . . . 7 ((𝜑𝑥𝐵) → if(𝑥𝑈, 𝐴, 0) ∈ ℂ)
8020, 35, 74, 79fvmptd3 6768 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = if(𝑥𝑈, 𝐴, 0))
8180neeq1d 3046 . . . . 5 ((𝜑𝑥𝐵) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 ↔ if(𝑥𝑈, 𝐴, 0) ≠ 0))
82 iffalse 4434 . . . . . 6 𝑥𝑈 → if(𝑥𝑈, 𝐴, 0) = 0)
8382necon1ai 3014 . . . . 5 (if(𝑥𝑈, 𝐴, 0) ≠ 0 → 𝑥𝑈)
8481, 83syl6bi 256 . . . 4 ((𝜑𝑥𝐵) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈))
8584ralrimiva 3149 . . 3 (𝜑 → ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈))
8659, 73, 853jca 1125 . 2 (𝜑 → (∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈)))
87 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
88 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
8987, 8, 24, 12, 6, 88dchrelbas3 25822 . 2 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷 ↔ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)):𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈)))))
905, 86, 89mpbir2and 712 1 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  ifcif 4425  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   · cmul 10531  cn 11625  0cn0 11885  Basecbs 16475  .rcmulr 16558  1rcur 19244  Ringcrg 19290  CRingccrg 19291  Unitcui 19385  ℤ/nczn 20196  DChrcdchr 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-nsg 18269  df-eqg 18270  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-cnfld 20092  df-zring 20164  df-zn 20200  df-dchr 25817
This theorem is referenced by:  dchr1cl  25835  dchrinvcl  25837  dchrptlem2  25849
  Copyright terms: Public domain W3C validator