MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbasd Structured version   Visualization version   GIF version

Theorem dchrelbasd 27156
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
dchrelbasd.1 (𝑘 = 𝑥𝑋 = 𝐴)
dchrelbasd.2 (𝑘 = 𝑦𝑋 = 𝐶)
dchrelbasd.3 (𝑘 = (𝑥(.r𝑍)𝑦) → 𝑋 = 𝐸)
dchrelbasd.4 (𝑘 = (1r𝑍) → 𝑋 = 𝑌)
dchrelbasd.5 ((𝜑𝑘𝑈) → 𝑋 ∈ ℂ)
dchrelbasd.6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 = (𝐴 · 𝐶))
dchrelbasd.7 (𝜑𝑌 = 1)
Assertion
Ref Expression
dchrelbasd (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷)
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑦,𝐵   𝑥,𝑁   𝑈,𝑘,𝑥,𝑦   𝐶,𝑘   𝑘,𝐸   𝜑,𝑘,𝑥,𝑦   𝑥,𝑋,𝑦   𝑘,𝑍,𝑥,𝑦   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑘)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑘)   𝑁(𝑦,𝑘)   𝑋(𝑘)   𝑌(𝑥,𝑦)

Proof of Theorem dchrelbasd
StepHypRef Expression
1 dchrelbasd.5 . . . . 5 ((𝜑𝑘𝑈) → 𝑋 ∈ ℂ)
21adantlr 715 . . . 4 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → 𝑋 ∈ ℂ)
3 0cnd 11173 . . . 4 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → 0 ∈ ℂ)
42, 3ifclda 4526 . . 3 ((𝜑𝑘𝐵) → if(𝑘𝑈, 𝑋, 0) ∈ ℂ)
54fmpttd 7089 . 2 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)):𝐵⟶ℂ)
6 dchrval.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76nnnn0d 12509 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
8 dchrval.z . . . . . . . . . 10 𝑍 = (ℤ/nℤ‘𝑁)
98zncrng 21460 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
10 crngring 20160 . . . . . . . . 9 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
117, 9, 103syl 18 . . . . . . . 8 (𝜑𝑍 ∈ Ring)
12 dchrval.u . . . . . . . . . 10 𝑈 = (Unit‘𝑍)
13 eqid 2730 . . . . . . . . . 10 (.r𝑍) = (.r𝑍)
1412, 13unitmulcl 20295 . . . . . . . . 9 ((𝑍 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
15143expb 1120 . . . . . . . 8 ((𝑍 ∈ Ring ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
1611, 15sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
1716iftrued 4498 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = 𝐸)
18 dchrelbasd.6 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 = (𝐴 · 𝐶))
1917, 18eqtrd 2765 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = (𝐴 · 𝐶))
20 eqid 2730 . . . . . 6 (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) = (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))
21 eleq1 2817 . . . . . . 7 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑘𝑈 ↔ (𝑥(.r𝑍)𝑦) ∈ 𝑈))
22 dchrelbasd.3 . . . . . . 7 (𝑘 = (𝑥(.r𝑍)𝑦) → 𝑋 = 𝐸)
2321, 22ifbieq1d 4515 . . . . . 6 (𝑘 = (𝑥(.r𝑍)𝑦) → if(𝑘𝑈, 𝑋, 0) = if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0))
24 dchrval.b . . . . . . . 8 𝐵 = (Base‘𝑍)
2524, 12unitss 20291 . . . . . . 7 𝑈𝐵
2625, 16sselid 3946 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
2722eleq1d 2814 . . . . . . . 8 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑋 ∈ ℂ ↔ 𝐸 ∈ ℂ))
281ralrimiva 3126 . . . . . . . . 9 (𝜑 → ∀𝑘𝑈 𝑋 ∈ ℂ)
2928adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∀𝑘𝑈 𝑋 ∈ ℂ)
3027, 29, 16rspcdva 3592 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 ∈ ℂ)
3117, 30eqeltrd 2829 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) ∈ ℂ)
3220, 23, 26, 31fvmptd3 6993 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0))
33 eleq1 2817 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑘𝑈𝑥𝑈))
34 dchrelbasd.1 . . . . . . . . 9 (𝑘 = 𝑥𝑋 = 𝐴)
3533, 34ifbieq1d 4515 . . . . . . . 8 (𝑘 = 𝑥 → if(𝑘𝑈, 𝑋, 0) = if(𝑥𝑈, 𝐴, 0))
36 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
3725, 36sselid 3946 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝐵)
38 iftrue 4496 . . . . . . . . . 10 (𝑥𝑈 → if(𝑥𝑈, 𝐴, 0) = 𝐴)
3938ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑥𝑈, 𝐴, 0) = 𝐴)
4034eleq1d 2814 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑋 ∈ ℂ ↔ 𝐴 ∈ ℂ))
4140, 29, 36rspcdva 3592 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐴 ∈ ℂ)
4239, 41eqeltrd 2829 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑥𝑈, 𝐴, 0) ∈ ℂ)
4320, 35, 37, 42fvmptd3 6993 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = if(𝑥𝑈, 𝐴, 0))
4443, 39eqtrd 2765 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = 𝐴)
45 eleq1 2817 . . . . . . . . 9 (𝑘 = 𝑦 → (𝑘𝑈𝑦𝑈))
46 dchrelbasd.2 . . . . . . . . 9 (𝑘 = 𝑦𝑋 = 𝐶)
4745, 46ifbieq1d 4515 . . . . . . . 8 (𝑘 = 𝑦 → if(𝑘𝑈, 𝑋, 0) = if(𝑦𝑈, 𝐶, 0))
48 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
4925, 48sselid 3946 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝐵)
50 iftrue 4496 . . . . . . . . . 10 (𝑦𝑈 → if(𝑦𝑈, 𝐶, 0) = 𝐶)
5150ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑦𝑈, 𝐶, 0) = 𝐶)
5246eleq1d 2814 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑋 ∈ ℂ ↔ 𝐶 ∈ ℂ))
5352, 29, 48rspcdva 3592 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐶 ∈ ℂ)
5451, 53eqeltrd 2829 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑦𝑈, 𝐶, 0) ∈ ℂ)
5520, 47, 49, 54fvmptd3 6993 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦) = if(𝑦𝑈, 𝐶, 0))
5655, 51eqtrd 2765 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦) = 𝐶)
5744, 56oveq12d 7407 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) = (𝐴 · 𝐶))
5819, 32, 573eqtr4d 2775 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)))
5958ralrimivva 3181 . . 3 (𝜑 → ∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)))
60 eleq1 2817 . . . . . 6 (𝑘 = (1r𝑍) → (𝑘𝑈 ↔ (1r𝑍) ∈ 𝑈))
61 dchrelbasd.4 . . . . . 6 (𝑘 = (1r𝑍) → 𝑋 = 𝑌)
6260, 61ifbieq1d 4515 . . . . 5 (𝑘 = (1r𝑍) → if(𝑘𝑈, 𝑋, 0) = if((1r𝑍) ∈ 𝑈, 𝑌, 0))
63 eqid 2730 . . . . . . . 8 (1r𝑍) = (1r𝑍)
6412, 631unit 20289 . . . . . . 7 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
6511, 64syl 17 . . . . . 6 (𝜑 → (1r𝑍) ∈ 𝑈)
6625, 65sselid 3946 . . . . 5 (𝜑 → (1r𝑍) ∈ 𝐵)
6765iftrued 4498 . . . . . . 7 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) = 𝑌)
68 dchrelbasd.7 . . . . . . 7 (𝜑𝑌 = 1)
6967, 68eqtrd 2765 . . . . . 6 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) = 1)
70 ax-1cn 11132 . . . . . 6 1 ∈ ℂ
7169, 70eqeltrdi 2837 . . . . 5 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) ∈ ℂ)
7220, 62, 66, 71fvmptd3 6993 . . . 4 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = if((1r𝑍) ∈ 𝑈, 𝑌, 0))
7372, 69eqtrd 2765 . . 3 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1)
74 simpr 484 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝐵)
7540rspcv 3587 . . . . . . . . . 10 (𝑥𝑈 → (∀𝑘𝑈 𝑋 ∈ ℂ → 𝐴 ∈ ℂ))
7628, 75mpan9 506 . . . . . . . . 9 ((𝜑𝑥𝑈) → 𝐴 ∈ ℂ)
7776adantlr 715 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑥𝑈) → 𝐴 ∈ ℂ)
78 0cnd 11173 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ ¬ 𝑥𝑈) → 0 ∈ ℂ)
7977, 78ifclda 4526 . . . . . . 7 ((𝜑𝑥𝐵) → if(𝑥𝑈, 𝐴, 0) ∈ ℂ)
8020, 35, 74, 79fvmptd3 6993 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = if(𝑥𝑈, 𝐴, 0))
8180neeq1d 2985 . . . . 5 ((𝜑𝑥𝐵) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 ↔ if(𝑥𝑈, 𝐴, 0) ≠ 0))
82 iffalse 4499 . . . . . 6 𝑥𝑈 → if(𝑥𝑈, 𝐴, 0) = 0)
8382necon1ai 2953 . . . . 5 (if(𝑥𝑈, 𝐴, 0) ≠ 0 → 𝑥𝑈)
8481, 83biimtrdi 253 . . . 4 ((𝜑𝑥𝐵) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈))
8584ralrimiva 3126 . . 3 (𝜑 → ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈))
8659, 73, 853jca 1128 . 2 (𝜑 → (∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈)))
87 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
88 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
8987, 8, 24, 12, 6, 88dchrelbas3 27155 . 2 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷 ↔ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)):𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈)))))
905, 86, 89mpbir2and 713 1 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  ifcif 4490  cmpt 5190  wf 6509  cfv 6513  (class class class)co 7389  cc 11072  0cc0 11074  1c1 11075   · cmul 11079  cn 12187  0cn0 12448  Basecbs 17185  .rcmulr 17227  1rcur 20096  Ringcrg 20148  CRingccrg 20149  Unitcui 20270  ℤ/nczn 21418  DChrcdchr 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-ec 8675  df-qs 8679  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17410  df-imas 17477  df-qus 17478  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-nsg 19062  df-eqg 19063  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-subrng 20461  df-subrg 20485  df-lmod 20774  df-lss 20844  df-lsp 20884  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-cnfld 21271  df-zring 21363  df-zn 21422  df-dchr 27150
This theorem is referenced by:  dchr1cl  27168  dchrinvcl  27170  dchrptlem2  27182
  Copyright terms: Public domain W3C validator