Proof of Theorem dchrelbasd
| Step | Hyp | Ref
| Expression |
| 1 | | dchrelbasd.5 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑋 ∈ ℂ) |
| 2 | 1 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝑈) → 𝑋 ∈ ℂ) |
| 3 | | 0cnd 11237 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝑈) → 0 ∈ ℂ) |
| 4 | 2, 3 | ifclda 4543 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝑈, 𝑋, 0) ∈ ℂ) |
| 5 | 4 | fmpttd 7116 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)):𝐵⟶ℂ) |
| 6 | | dchrval.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 7 | 6 | nnnn0d 12571 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 8 | | dchrval.z |
. . . . . . . . . 10
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
| 9 | 8 | zncrng 21530 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑍 ∈
CRing) |
| 10 | | crngring 20215 |
. . . . . . . . 9
⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) |
| 11 | 7, 9, 10 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ Ring) |
| 12 | | dchrval.u |
. . . . . . . . . 10
⊢ 𝑈 = (Unit‘𝑍) |
| 13 | | eqid 2734 |
. . . . . . . . . 10
⊢
(.r‘𝑍) = (.r‘𝑍) |
| 14 | 12, 13 | unitmulcl 20353 |
. . . . . . . . 9
⊢ ((𝑍 ∈ Ring ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈) → (𝑥(.r‘𝑍)𝑦) ∈ 𝑈) |
| 15 | 14 | 3expb 1120 |
. . . . . . . 8
⊢ ((𝑍 ∈ Ring ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(.r‘𝑍)𝑦) ∈ 𝑈) |
| 16 | 11, 15 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(.r‘𝑍)𝑦) ∈ 𝑈) |
| 17 | 16 | iftrued 4515 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if((𝑥(.r‘𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = 𝐸) |
| 18 | | dchrelbasd.6 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐸 = (𝐴 · 𝐶)) |
| 19 | 17, 18 | eqtrd 2769 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if((𝑥(.r‘𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = (𝐴 · 𝐶)) |
| 20 | | eqid 2734 |
. . . . . 6
⊢ (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)) = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)) |
| 21 | | eleq1 2821 |
. . . . . . 7
⊢ (𝑘 = (𝑥(.r‘𝑍)𝑦) → (𝑘 ∈ 𝑈 ↔ (𝑥(.r‘𝑍)𝑦) ∈ 𝑈)) |
| 22 | | dchrelbasd.3 |
. . . . . . 7
⊢ (𝑘 = (𝑥(.r‘𝑍)𝑦) → 𝑋 = 𝐸) |
| 23 | 21, 22 | ifbieq1d 4532 |
. . . . . 6
⊢ (𝑘 = (𝑥(.r‘𝑍)𝑦) → if(𝑘 ∈ 𝑈, 𝑋, 0) = if((𝑥(.r‘𝑍)𝑦) ∈ 𝑈, 𝐸, 0)) |
| 24 | | dchrval.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑍) |
| 25 | 24, 12 | unitss 20349 |
. . . . . . 7
⊢ 𝑈 ⊆ 𝐵 |
| 26 | 25, 16 | sselid 3963 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(.r‘𝑍)𝑦) ∈ 𝐵) |
| 27 | 22 | eleq1d 2818 |
. . . . . . . 8
⊢ (𝑘 = (𝑥(.r‘𝑍)𝑦) → (𝑋 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
| 28 | 1 | ralrimiva 3133 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ 𝑈 𝑋 ∈ ℂ) |
| 29 | 28 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ∀𝑘 ∈ 𝑈 𝑋 ∈ ℂ) |
| 30 | 27, 29, 16 | rspcdva 3607 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐸 ∈ ℂ) |
| 31 | 17, 30 | eqeltrd 2833 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if((𝑥(.r‘𝑍)𝑦) ∈ 𝑈, 𝐸, 0) ∈ ℂ) |
| 32 | 20, 23, 26, 31 | fvmptd3 7020 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(𝑥(.r‘𝑍)𝑦)) = if((𝑥(.r‘𝑍)𝑦) ∈ 𝑈, 𝐸, 0)) |
| 33 | | eleq1 2821 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (𝑘 ∈ 𝑈 ↔ 𝑥 ∈ 𝑈)) |
| 34 | | dchrelbasd.1 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → 𝑋 = 𝐴) |
| 35 | 33, 34 | ifbieq1d 4532 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → if(𝑘 ∈ 𝑈, 𝑋, 0) = if(𝑥 ∈ 𝑈, 𝐴, 0)) |
| 36 | | simprl 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝑈) |
| 37 | 25, 36 | sselid 3963 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝐵) |
| 38 | | iftrue 4513 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑈 → if(𝑥 ∈ 𝑈, 𝐴, 0) = 𝐴) |
| 39 | 38 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if(𝑥 ∈ 𝑈, 𝐴, 0) = 𝐴) |
| 40 | 34 | eleq1d 2818 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝑋 ∈ ℂ ↔ 𝐴 ∈ ℂ)) |
| 41 | 40, 29, 36 | rspcdva 3607 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐴 ∈ ℂ) |
| 42 | 39, 41 | eqeltrd 2833 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if(𝑥 ∈ 𝑈, 𝐴, 0) ∈ ℂ) |
| 43 | 20, 35, 37, 42 | fvmptd3 7020 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) = if(𝑥 ∈ 𝑈, 𝐴, 0)) |
| 44 | 43, 39 | eqtrd 2769 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) = 𝐴) |
| 45 | | eleq1 2821 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → (𝑘 ∈ 𝑈 ↔ 𝑦 ∈ 𝑈)) |
| 46 | | dchrelbasd.2 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → 𝑋 = 𝐶) |
| 47 | 45, 46 | ifbieq1d 4532 |
. . . . . . . 8
⊢ (𝑘 = 𝑦 → if(𝑘 ∈ 𝑈, 𝑋, 0) = if(𝑦 ∈ 𝑈, 𝐶, 0)) |
| 48 | | simprr 772 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝑈) |
| 49 | 25, 48 | sselid 3963 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝐵) |
| 50 | | iftrue 4513 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑈 → if(𝑦 ∈ 𝑈, 𝐶, 0) = 𝐶) |
| 51 | 50 | ad2antll 729 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if(𝑦 ∈ 𝑈, 𝐶, 0) = 𝐶) |
| 52 | 46 | eleq1d 2818 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → (𝑋 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
| 53 | 52, 29, 48 | rspcdva 3607 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐶 ∈ ℂ) |
| 54 | 51, 53 | eqeltrd 2833 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if(𝑦 ∈ 𝑈, 𝐶, 0) ∈ ℂ) |
| 55 | 20, 47, 49, 54 | fvmptd3 7020 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦) = if(𝑦 ∈ 𝑈, 𝐶, 0)) |
| 56 | 55, 51 | eqtrd 2769 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦) = 𝐶) |
| 57 | 44, 56 | oveq12d 7432 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) · ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦)) = (𝐴 · 𝐶)) |
| 58 | 19, 32, 57 | 3eqtr4d 2779 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(𝑥(.r‘𝑍)𝑦)) = (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) · ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦))) |
| 59 | 58 | ralrimivva 3189 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(𝑥(.r‘𝑍)𝑦)) = (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) · ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦))) |
| 60 | | eleq1 2821 |
. . . . . 6
⊢ (𝑘 = (1r‘𝑍) → (𝑘 ∈ 𝑈 ↔ (1r‘𝑍) ∈ 𝑈)) |
| 61 | | dchrelbasd.4 |
. . . . . 6
⊢ (𝑘 = (1r‘𝑍) → 𝑋 = 𝑌) |
| 62 | 60, 61 | ifbieq1d 4532 |
. . . . 5
⊢ (𝑘 = (1r‘𝑍) → if(𝑘 ∈ 𝑈, 𝑋, 0) = if((1r‘𝑍) ∈ 𝑈, 𝑌, 0)) |
| 63 | | eqid 2734 |
. . . . . . . 8
⊢
(1r‘𝑍) = (1r‘𝑍) |
| 64 | 12, 63 | 1unit 20347 |
. . . . . . 7
⊢ (𝑍 ∈ Ring →
(1r‘𝑍)
∈ 𝑈) |
| 65 | 11, 64 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑍) ∈ 𝑈) |
| 66 | 25, 65 | sselid 3963 |
. . . . 5
⊢ (𝜑 → (1r‘𝑍) ∈ 𝐵) |
| 67 | 65 | iftrued 4515 |
. . . . . . 7
⊢ (𝜑 →
if((1r‘𝑍)
∈ 𝑈, 𝑌, 0) = 𝑌) |
| 68 | | dchrelbasd.7 |
. . . . . . 7
⊢ (𝜑 → 𝑌 = 1) |
| 69 | 67, 68 | eqtrd 2769 |
. . . . . 6
⊢ (𝜑 →
if((1r‘𝑍)
∈ 𝑈, 𝑌, 0) = 1) |
| 70 | | ax-1cn 11196 |
. . . . . 6
⊢ 1 ∈
ℂ |
| 71 | 69, 70 | eqeltrdi 2841 |
. . . . 5
⊢ (𝜑 →
if((1r‘𝑍)
∈ 𝑈, 𝑌, 0) ∈ ℂ) |
| 72 | 20, 62, 66, 71 | fvmptd3 7020 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(1r‘𝑍)) =
if((1r‘𝑍)
∈ 𝑈, 𝑌, 0)) |
| 73 | 72, 69 | eqtrd 2769 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(1r‘𝑍)) = 1) |
| 74 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 75 | 40 | rspcv 3602 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑈 → (∀𝑘 ∈ 𝑈 𝑋 ∈ ℂ → 𝐴 ∈ ℂ)) |
| 76 | 28, 75 | mpan9 506 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ ℂ) |
| 77 | 76 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ ℂ) |
| 78 | | 0cnd 11237 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝑈) → 0 ∈ ℂ) |
| 79 | 77, 78 | ifclda 4543 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝑈, 𝐴, 0) ∈ ℂ) |
| 80 | 20, 35, 74, 79 | fvmptd3 7020 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) = if(𝑥 ∈ 𝑈, 𝐴, 0)) |
| 81 | 80 | neeq1d 2990 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) ≠ 0 ↔ if(𝑥 ∈ 𝑈, 𝐴, 0) ≠ 0)) |
| 82 | | iffalse 4516 |
. . . . . 6
⊢ (¬
𝑥 ∈ 𝑈 → if(𝑥 ∈ 𝑈, 𝐴, 0) = 0) |
| 83 | 82 | necon1ai 2958 |
. . . . 5
⊢ (if(𝑥 ∈ 𝑈, 𝐴, 0) ≠ 0 → 𝑥 ∈ 𝑈) |
| 84 | 81, 83 | biimtrdi 253 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)) |
| 85 | 84 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)) |
| 86 | 59, 73, 85 | 3jca 1128 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(𝑥(.r‘𝑍)𝑦)) = (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) · ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(1r‘𝑍)) = 1 ∧ ∀𝑥 ∈ 𝐵 (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈))) |
| 87 | | dchrval.g |
. . 3
⊢ 𝐺 = (DChr‘𝑁) |
| 88 | | dchrbas.b |
. . 3
⊢ 𝐷 = (Base‘𝐺) |
| 89 | 87, 8, 24, 12, 6, 88 | dchrelbas3 27237 |
. 2
⊢ (𝜑 → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)) ∈ 𝐷 ↔ ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)):𝐵⟶ℂ ∧ (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(𝑥(.r‘𝑍)𝑦)) = (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) · ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(1r‘𝑍)) = 1 ∧ ∀𝑥 ∈ 𝐵 (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈))))) |
| 90 | 5, 86, 89 | mpbir2and 713 |
1
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)) ∈ 𝐷) |