MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbasd Structured version   Visualization version   GIF version

Theorem dchrelbasd 27190
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
dchrelbasd.1 (𝑘 = 𝑥𝑋 = 𝐴)
dchrelbasd.2 (𝑘 = 𝑦𝑋 = 𝐶)
dchrelbasd.3 (𝑘 = (𝑥(.r𝑍)𝑦) → 𝑋 = 𝐸)
dchrelbasd.4 (𝑘 = (1r𝑍) → 𝑋 = 𝑌)
dchrelbasd.5 ((𝜑𝑘𝑈) → 𝑋 ∈ ℂ)
dchrelbasd.6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 = (𝐴 · 𝐶))
dchrelbasd.7 (𝜑𝑌 = 1)
Assertion
Ref Expression
dchrelbasd (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷)
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑦,𝐵   𝑥,𝑁   𝑈,𝑘,𝑥,𝑦   𝐶,𝑘   𝑘,𝐸   𝜑,𝑘,𝑥,𝑦   𝑥,𝑋,𝑦   𝑘,𝑍,𝑥,𝑦   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑘)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑘)   𝑁(𝑦,𝑘)   𝑋(𝑘)   𝑌(𝑥,𝑦)

Proof of Theorem dchrelbasd
StepHypRef Expression
1 dchrelbasd.5 . . . . 5 ((𝜑𝑘𝑈) → 𝑋 ∈ ℂ)
21adantlr 713 . . . 4 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → 𝑋 ∈ ℂ)
3 0cnd 11243 . . . 4 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → 0 ∈ ℂ)
42, 3ifclda 4565 . . 3 ((𝜑𝑘𝐵) → if(𝑘𝑈, 𝑋, 0) ∈ ℂ)
54fmpttd 7128 . 2 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)):𝐵⟶ℂ)
6 dchrval.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76nnnn0d 12568 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
8 dchrval.z . . . . . . . . . 10 𝑍 = (ℤ/nℤ‘𝑁)
98zncrng 21483 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
10 crngring 20190 . . . . . . . . 9 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
117, 9, 103syl 18 . . . . . . . 8 (𝜑𝑍 ∈ Ring)
12 dchrval.u . . . . . . . . . 10 𝑈 = (Unit‘𝑍)
13 eqid 2727 . . . . . . . . . 10 (.r𝑍) = (.r𝑍)
1412, 13unitmulcl 20324 . . . . . . . . 9 ((𝑍 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
15143expb 1117 . . . . . . . 8 ((𝑍 ∈ Ring ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
1611, 15sylan 578 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
1716iftrued 4538 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = 𝐸)
18 dchrelbasd.6 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 = (𝐴 · 𝐶))
1917, 18eqtrd 2767 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = (𝐴 · 𝐶))
20 eqid 2727 . . . . . 6 (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) = (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))
21 eleq1 2816 . . . . . . 7 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑘𝑈 ↔ (𝑥(.r𝑍)𝑦) ∈ 𝑈))
22 dchrelbasd.3 . . . . . . 7 (𝑘 = (𝑥(.r𝑍)𝑦) → 𝑋 = 𝐸)
2321, 22ifbieq1d 4554 . . . . . 6 (𝑘 = (𝑥(.r𝑍)𝑦) → if(𝑘𝑈, 𝑋, 0) = if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0))
24 dchrval.b . . . . . . . 8 𝐵 = (Base‘𝑍)
2524, 12unitss 20320 . . . . . . 7 𝑈𝐵
2625, 16sselid 3978 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
2722eleq1d 2813 . . . . . . . 8 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑋 ∈ ℂ ↔ 𝐸 ∈ ℂ))
281ralrimiva 3142 . . . . . . . . 9 (𝜑 → ∀𝑘𝑈 𝑋 ∈ ℂ)
2928adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∀𝑘𝑈 𝑋 ∈ ℂ)
3027, 29, 16rspcdva 3610 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 ∈ ℂ)
3117, 30eqeltrd 2828 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) ∈ ℂ)
3220, 23, 26, 31fvmptd3 7031 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0))
33 eleq1 2816 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑘𝑈𝑥𝑈))
34 dchrelbasd.1 . . . . . . . . 9 (𝑘 = 𝑥𝑋 = 𝐴)
3533, 34ifbieq1d 4554 . . . . . . . 8 (𝑘 = 𝑥 → if(𝑘𝑈, 𝑋, 0) = if(𝑥𝑈, 𝐴, 0))
36 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
3725, 36sselid 3978 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝐵)
38 iftrue 4536 . . . . . . . . . 10 (𝑥𝑈 → if(𝑥𝑈, 𝐴, 0) = 𝐴)
3938ad2antrl 726 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑥𝑈, 𝐴, 0) = 𝐴)
4034eleq1d 2813 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑋 ∈ ℂ ↔ 𝐴 ∈ ℂ))
4140, 29, 36rspcdva 3610 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐴 ∈ ℂ)
4239, 41eqeltrd 2828 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑥𝑈, 𝐴, 0) ∈ ℂ)
4320, 35, 37, 42fvmptd3 7031 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = if(𝑥𝑈, 𝐴, 0))
4443, 39eqtrd 2767 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = 𝐴)
45 eleq1 2816 . . . . . . . . 9 (𝑘 = 𝑦 → (𝑘𝑈𝑦𝑈))
46 dchrelbasd.2 . . . . . . . . 9 (𝑘 = 𝑦𝑋 = 𝐶)
4745, 46ifbieq1d 4554 . . . . . . . 8 (𝑘 = 𝑦 → if(𝑘𝑈, 𝑋, 0) = if(𝑦𝑈, 𝐶, 0))
48 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
4925, 48sselid 3978 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝐵)
50 iftrue 4536 . . . . . . . . . 10 (𝑦𝑈 → if(𝑦𝑈, 𝐶, 0) = 𝐶)
5150ad2antll 727 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑦𝑈, 𝐶, 0) = 𝐶)
5246eleq1d 2813 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑋 ∈ ℂ ↔ 𝐶 ∈ ℂ))
5352, 29, 48rspcdva 3610 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐶 ∈ ℂ)
5451, 53eqeltrd 2828 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑦𝑈, 𝐶, 0) ∈ ℂ)
5520, 47, 49, 54fvmptd3 7031 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦) = if(𝑦𝑈, 𝐶, 0))
5655, 51eqtrd 2767 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦) = 𝐶)
5744, 56oveq12d 7442 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) = (𝐴 · 𝐶))
5819, 32, 573eqtr4d 2777 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)))
5958ralrimivva 3196 . . 3 (𝜑 → ∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)))
60 eleq1 2816 . . . . . 6 (𝑘 = (1r𝑍) → (𝑘𝑈 ↔ (1r𝑍) ∈ 𝑈))
61 dchrelbasd.4 . . . . . 6 (𝑘 = (1r𝑍) → 𝑋 = 𝑌)
6260, 61ifbieq1d 4554 . . . . 5 (𝑘 = (1r𝑍) → if(𝑘𝑈, 𝑋, 0) = if((1r𝑍) ∈ 𝑈, 𝑌, 0))
63 eqid 2727 . . . . . . . 8 (1r𝑍) = (1r𝑍)
6412, 631unit 20318 . . . . . . 7 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
6511, 64syl 17 . . . . . 6 (𝜑 → (1r𝑍) ∈ 𝑈)
6625, 65sselid 3978 . . . . 5 (𝜑 → (1r𝑍) ∈ 𝐵)
6765iftrued 4538 . . . . . . 7 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) = 𝑌)
68 dchrelbasd.7 . . . . . . 7 (𝜑𝑌 = 1)
6967, 68eqtrd 2767 . . . . . 6 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) = 1)
70 ax-1cn 11202 . . . . . 6 1 ∈ ℂ
7169, 70eqeltrdi 2836 . . . . 5 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) ∈ ℂ)
7220, 62, 66, 71fvmptd3 7031 . . . 4 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = if((1r𝑍) ∈ 𝑈, 𝑌, 0))
7372, 69eqtrd 2767 . . 3 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1)
74 simpr 483 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝐵)
7540rspcv 3605 . . . . . . . . . 10 (𝑥𝑈 → (∀𝑘𝑈 𝑋 ∈ ℂ → 𝐴 ∈ ℂ))
7628, 75mpan9 505 . . . . . . . . 9 ((𝜑𝑥𝑈) → 𝐴 ∈ ℂ)
7776adantlr 713 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑥𝑈) → 𝐴 ∈ ℂ)
78 0cnd 11243 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ ¬ 𝑥𝑈) → 0 ∈ ℂ)
7977, 78ifclda 4565 . . . . . . 7 ((𝜑𝑥𝐵) → if(𝑥𝑈, 𝐴, 0) ∈ ℂ)
8020, 35, 74, 79fvmptd3 7031 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = if(𝑥𝑈, 𝐴, 0))
8180neeq1d 2996 . . . . 5 ((𝜑𝑥𝐵) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 ↔ if(𝑥𝑈, 𝐴, 0) ≠ 0))
82 iffalse 4539 . . . . . 6 𝑥𝑈 → if(𝑥𝑈, 𝐴, 0) = 0)
8382necon1ai 2964 . . . . 5 (if(𝑥𝑈, 𝐴, 0) ≠ 0 → 𝑥𝑈)
8481, 83biimtrdi 252 . . . 4 ((𝜑𝑥𝐵) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈))
8584ralrimiva 3142 . . 3 (𝜑 → ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈))
8659, 73, 853jca 1125 . 2 (𝜑 → (∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈)))
87 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
88 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
8987, 8, 24, 12, 6, 88dchrelbas3 27189 . 2 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷 ↔ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)):𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈)))))
905, 86, 89mpbir2and 711 1 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2936  wral 3057  ifcif 4530  cmpt 5233  wf 6547  cfv 6551  (class class class)co 7424  cc 11142  0cc0 11144  1c1 11145   · cmul 11149  cn 12248  0cn0 12508  Basecbs 17185  .rcmulr 17239  1rcur 20126  Ringcrg 20178  CRingccrg 20179  Unitcui 20299  ℤ/nczn 21433  DChrcdchr 27183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-addf 11223  ax-mulf 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-tpos 8236  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-ec 8731  df-qs 8735  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-fz 13523  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-starv 17253  df-sca 17254  df-vsca 17255  df-ip 17256  df-tset 17257  df-ple 17258  df-ds 17260  df-unif 17261  df-0g 17428  df-imas 17495  df-qus 17496  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18745  df-grp 18898  df-minusg 18899  df-sbg 18900  df-subg 19083  df-nsg 19084  df-eqg 19085  df-cmn 19742  df-abl 19743  df-mgp 20080  df-rng 20098  df-ur 20127  df-ring 20180  df-cring 20181  df-oppr 20278  df-dvdsr 20301  df-unit 20302  df-subrng 20488  df-subrg 20513  df-lmod 20750  df-lss 20821  df-lsp 20861  df-sra 21063  df-rgmod 21064  df-lidl 21109  df-rsp 21110  df-2idl 21149  df-cnfld 21285  df-zring 21378  df-zn 21437  df-dchr 27184
This theorem is referenced by:  dchr1cl  27202  dchrinvcl  27204  dchrptlem2  27216
  Copyright terms: Public domain W3C validator