Proof of Theorem dchrelbasd
Step | Hyp | Ref
| Expression |
1 | | dchrelbasd.5 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑋 ∈ ℂ) |
2 | 1 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝑈) → 𝑋 ∈ ℂ) |
3 | | 0cnd 10899 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝑈) → 0 ∈ ℂ) |
4 | 2, 3 | ifclda 4491 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝑈, 𝑋, 0) ∈ ℂ) |
5 | 4 | fmpttd 6971 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)):𝐵⟶ℂ) |
6 | | dchrval.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℕ) |
7 | 6 | nnnn0d 12223 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
8 | | dchrval.z |
. . . . . . . . . 10
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
9 | 8 | zncrng 20664 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑍 ∈
CRing) |
10 | | crngring 19710 |
. . . . . . . . 9
⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) |
11 | 7, 9, 10 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ Ring) |
12 | | dchrval.u |
. . . . . . . . . 10
⊢ 𝑈 = (Unit‘𝑍) |
13 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝑍) = (.r‘𝑍) |
14 | 12, 13 | unitmulcl 19821 |
. . . . . . . . 9
⊢ ((𝑍 ∈ Ring ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈) → (𝑥(.r‘𝑍)𝑦) ∈ 𝑈) |
15 | 14 | 3expb 1118 |
. . . . . . . 8
⊢ ((𝑍 ∈ Ring ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(.r‘𝑍)𝑦) ∈ 𝑈) |
16 | 11, 15 | sylan 579 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(.r‘𝑍)𝑦) ∈ 𝑈) |
17 | 16 | iftrued 4464 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if((𝑥(.r‘𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = 𝐸) |
18 | | dchrelbasd.6 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐸 = (𝐴 · 𝐶)) |
19 | 17, 18 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if((𝑥(.r‘𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = (𝐴 · 𝐶)) |
20 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)) = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)) |
21 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑘 = (𝑥(.r‘𝑍)𝑦) → (𝑘 ∈ 𝑈 ↔ (𝑥(.r‘𝑍)𝑦) ∈ 𝑈)) |
22 | | dchrelbasd.3 |
. . . . . . 7
⊢ (𝑘 = (𝑥(.r‘𝑍)𝑦) → 𝑋 = 𝐸) |
23 | 21, 22 | ifbieq1d 4480 |
. . . . . 6
⊢ (𝑘 = (𝑥(.r‘𝑍)𝑦) → if(𝑘 ∈ 𝑈, 𝑋, 0) = if((𝑥(.r‘𝑍)𝑦) ∈ 𝑈, 𝐸, 0)) |
24 | | dchrval.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑍) |
25 | 24, 12 | unitss 19817 |
. . . . . . 7
⊢ 𝑈 ⊆ 𝐵 |
26 | 25, 16 | sselid 3915 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(.r‘𝑍)𝑦) ∈ 𝐵) |
27 | 22 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑘 = (𝑥(.r‘𝑍)𝑦) → (𝑋 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
28 | 1 | ralrimiva 3107 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ 𝑈 𝑋 ∈ ℂ) |
29 | 28 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ∀𝑘 ∈ 𝑈 𝑋 ∈ ℂ) |
30 | 27, 29, 16 | rspcdva 3554 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐸 ∈ ℂ) |
31 | 17, 30 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if((𝑥(.r‘𝑍)𝑦) ∈ 𝑈, 𝐸, 0) ∈ ℂ) |
32 | 20, 23, 26, 31 | fvmptd3 6880 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(𝑥(.r‘𝑍)𝑦)) = if((𝑥(.r‘𝑍)𝑦) ∈ 𝑈, 𝐸, 0)) |
33 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (𝑘 ∈ 𝑈 ↔ 𝑥 ∈ 𝑈)) |
34 | | dchrelbasd.1 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → 𝑋 = 𝐴) |
35 | 33, 34 | ifbieq1d 4480 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → if(𝑘 ∈ 𝑈, 𝑋, 0) = if(𝑥 ∈ 𝑈, 𝐴, 0)) |
36 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝑈) |
37 | 25, 36 | sselid 3915 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝐵) |
38 | | iftrue 4462 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑈 → if(𝑥 ∈ 𝑈, 𝐴, 0) = 𝐴) |
39 | 38 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if(𝑥 ∈ 𝑈, 𝐴, 0) = 𝐴) |
40 | 34 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝑋 ∈ ℂ ↔ 𝐴 ∈ ℂ)) |
41 | 40, 29, 36 | rspcdva 3554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐴 ∈ ℂ) |
42 | 39, 41 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if(𝑥 ∈ 𝑈, 𝐴, 0) ∈ ℂ) |
43 | 20, 35, 37, 42 | fvmptd3 6880 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) = if(𝑥 ∈ 𝑈, 𝐴, 0)) |
44 | 43, 39 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) = 𝐴) |
45 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → (𝑘 ∈ 𝑈 ↔ 𝑦 ∈ 𝑈)) |
46 | | dchrelbasd.2 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → 𝑋 = 𝐶) |
47 | 45, 46 | ifbieq1d 4480 |
. . . . . . . 8
⊢ (𝑘 = 𝑦 → if(𝑘 ∈ 𝑈, 𝑋, 0) = if(𝑦 ∈ 𝑈, 𝐶, 0)) |
48 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝑈) |
49 | 25, 48 | sselid 3915 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝐵) |
50 | | iftrue 4462 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑈 → if(𝑦 ∈ 𝑈, 𝐶, 0) = 𝐶) |
51 | 50 | ad2antll 725 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if(𝑦 ∈ 𝑈, 𝐶, 0) = 𝐶) |
52 | 46 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → (𝑋 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
53 | 52, 29, 48 | rspcdva 3554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐶 ∈ ℂ) |
54 | 51, 53 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → if(𝑦 ∈ 𝑈, 𝐶, 0) ∈ ℂ) |
55 | 20, 47, 49, 54 | fvmptd3 6880 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦) = if(𝑦 ∈ 𝑈, 𝐶, 0)) |
56 | 55, 51 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦) = 𝐶) |
57 | 44, 56 | oveq12d 7273 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) · ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦)) = (𝐴 · 𝐶)) |
58 | 19, 32, 57 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(𝑥(.r‘𝑍)𝑦)) = (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) · ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦))) |
59 | 58 | ralrimivva 3114 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(𝑥(.r‘𝑍)𝑦)) = (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) · ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦))) |
60 | | eleq1 2826 |
. . . . . 6
⊢ (𝑘 = (1r‘𝑍) → (𝑘 ∈ 𝑈 ↔ (1r‘𝑍) ∈ 𝑈)) |
61 | | dchrelbasd.4 |
. . . . . 6
⊢ (𝑘 = (1r‘𝑍) → 𝑋 = 𝑌) |
62 | 60, 61 | ifbieq1d 4480 |
. . . . 5
⊢ (𝑘 = (1r‘𝑍) → if(𝑘 ∈ 𝑈, 𝑋, 0) = if((1r‘𝑍) ∈ 𝑈, 𝑌, 0)) |
63 | | eqid 2738 |
. . . . . . . 8
⊢
(1r‘𝑍) = (1r‘𝑍) |
64 | 12, 63 | 1unit 19815 |
. . . . . . 7
⊢ (𝑍 ∈ Ring →
(1r‘𝑍)
∈ 𝑈) |
65 | 11, 64 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑍) ∈ 𝑈) |
66 | 25, 65 | sselid 3915 |
. . . . 5
⊢ (𝜑 → (1r‘𝑍) ∈ 𝐵) |
67 | 65 | iftrued 4464 |
. . . . . . 7
⊢ (𝜑 →
if((1r‘𝑍)
∈ 𝑈, 𝑌, 0) = 𝑌) |
68 | | dchrelbasd.7 |
. . . . . . 7
⊢ (𝜑 → 𝑌 = 1) |
69 | 67, 68 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 →
if((1r‘𝑍)
∈ 𝑈, 𝑌, 0) = 1) |
70 | | ax-1cn 10860 |
. . . . . 6
⊢ 1 ∈
ℂ |
71 | 69, 70 | eqeltrdi 2847 |
. . . . 5
⊢ (𝜑 →
if((1r‘𝑍)
∈ 𝑈, 𝑌, 0) ∈ ℂ) |
72 | 20, 62, 66, 71 | fvmptd3 6880 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(1r‘𝑍)) =
if((1r‘𝑍)
∈ 𝑈, 𝑌, 0)) |
73 | 72, 69 | eqtrd 2778 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(1r‘𝑍)) = 1) |
74 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
75 | 40 | rspcv 3547 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑈 → (∀𝑘 ∈ 𝑈 𝑋 ∈ ℂ → 𝐴 ∈ ℂ)) |
76 | 28, 75 | mpan9 506 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ ℂ) |
77 | 76 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ ℂ) |
78 | | 0cnd 10899 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝑈) → 0 ∈ ℂ) |
79 | 77, 78 | ifclda 4491 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝑈, 𝐴, 0) ∈ ℂ) |
80 | 20, 35, 74, 79 | fvmptd3 6880 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) = if(𝑥 ∈ 𝑈, 𝐴, 0)) |
81 | 80 | neeq1d 3002 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) ≠ 0 ↔ if(𝑥 ∈ 𝑈, 𝐴, 0) ≠ 0)) |
82 | | iffalse 4465 |
. . . . . 6
⊢ (¬
𝑥 ∈ 𝑈 → if(𝑥 ∈ 𝑈, 𝐴, 0) = 0) |
83 | 82 | necon1ai 2970 |
. . . . 5
⊢ (if(𝑥 ∈ 𝑈, 𝐴, 0) ≠ 0 → 𝑥 ∈ 𝑈) |
84 | 81, 83 | syl6bi 252 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)) |
85 | 84 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)) |
86 | 59, 73, 85 | 3jca 1126 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(𝑥(.r‘𝑍)𝑦)) = (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) · ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(1r‘𝑍)) = 1 ∧ ∀𝑥 ∈ 𝐵 (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈))) |
87 | | dchrval.g |
. . 3
⊢ 𝐺 = (DChr‘𝑁) |
88 | | dchrbas.b |
. . 3
⊢ 𝐷 = (Base‘𝐺) |
89 | 87, 8, 24, 12, 6, 88 | dchrelbas3 26291 |
. 2
⊢ (𝜑 → ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)) ∈ 𝐷 ↔ ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)):𝐵⟶ℂ ∧ (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(𝑥(.r‘𝑍)𝑦)) = (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) · ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘(1r‘𝑍)) = 1 ∧ ∀𝑥 ∈ 𝐵 (((𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈))))) |
90 | 5, 86, 89 | mpbir2and 709 |
1
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 𝑋, 0)) ∈ 𝐷) |