Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lactghmga Structured version   Visualization version   GIF version

Theorem lactghmga 18528
 Description: The converse of galactghm 18527. The uncurrying of a homomorphism into (SymGrp‘𝑌) is a group action. Thus, group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
lactghmga.x 𝑋 = (Base‘𝐺)
lactghmga.h 𝐻 = (SymGrp‘𝑌)
lactghmga.f = (𝑥𝑋, 𝑦𝑌 ↦ ((𝐹𝑥)‘𝑦))
Assertion
Ref Expression
lactghmga (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∈ (𝐺 GrpAct 𝑌))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem lactghmga
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 18355 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
2 ghmgrp2 18356 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
3 grpn0 18130 . . 3 (𝐻 ∈ Grp → 𝐻 ≠ ∅)
4 lactghmga.h . . . . 5 𝐻 = (SymGrp‘𝑌)
5 fvprc 6638 . . . . 5 𝑌 ∈ V → (SymGrp‘𝑌) = ∅)
64, 5syl5eq 2845 . . . 4 𝑌 ∈ V → 𝐻 = ∅)
76necon1ai 3014 . . 3 (𝐻 ≠ ∅ → 𝑌 ∈ V)
82, 3, 73syl 18 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝑌 ∈ V)
9 lactghmga.x . . . . . . . . . . 11 𝑋 = (Base‘𝐺)
10 eqid 2798 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
119, 10ghmf 18357 . . . . . . . . . 10 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝑋⟶(Base‘𝐻))
1211ffvelrnda 6828 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ (Base‘𝐻))
138adantr 484 . . . . . . . . . 10 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → 𝑌 ∈ V)
144, 10elsymgbas 18497 . . . . . . . . . 10 (𝑌 ∈ V → ((𝐹𝑥) ∈ (Base‘𝐻) ↔ (𝐹𝑥):𝑌1-1-onto𝑌))
1513, 14syl 17 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → ((𝐹𝑥) ∈ (Base‘𝐻) ↔ (𝐹𝑥):𝑌1-1-onto𝑌))
1612, 15mpbid 235 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥):𝑌1-1-onto𝑌)
17 f1of 6590 . . . . . . . 8 ((𝐹𝑥):𝑌1-1-onto𝑌 → (𝐹𝑥):𝑌𝑌)
1816, 17syl 17 . . . . . . 7 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥):𝑌𝑌)
1918ffvelrnda 6828 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) ∧ 𝑦𝑌) → ((𝐹𝑥)‘𝑦) ∈ 𝑌)
2019ralrimiva 3149 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → ∀𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌)
2120ralrimiva 3149 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∀𝑥𝑋𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌)
22 lactghmga.f . . . . 5 = (𝑥𝑋, 𝑦𝑌 ↦ ((𝐹𝑥)‘𝑦))
2322fmpo 7750 . . . 4 (∀𝑥𝑋𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌 :(𝑋 × 𝑌)⟶𝑌)
2421, 23sylib 221 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → :(𝑋 × 𝑌)⟶𝑌)
25 eqid 2798 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
269, 25grpidcl 18126 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
271, 26syl 17 . . . . . . 7 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (0g𝐺) ∈ 𝑋)
28 fveq2 6645 . . . . . . . . 9 (𝑥 = (0g𝐺) → (𝐹𝑥) = (𝐹‘(0g𝐺)))
2928fveq1d 6647 . . . . . . . 8 (𝑥 = (0g𝐺) → ((𝐹𝑥)‘𝑦) = ((𝐹‘(0g𝐺))‘𝑦))
30 fveq2 6645 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐹‘(0g𝐺))‘𝑦) = ((𝐹‘(0g𝐺))‘𝑧))
31 fvex 6658 . . . . . . . 8 ((𝐹‘(0g𝐺))‘𝑧) ∈ V
3229, 30, 22, 31ovmpo 7290 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑧𝑌) → ((0g𝐺) 𝑧) = ((𝐹‘(0g𝐺))‘𝑧))
3327, 32sylan 583 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = ((𝐹‘(0g𝐺))‘𝑧))
34 eqid 2798 . . . . . . . . . 10 (0g𝐻) = (0g𝐻)
3525, 34ghmid 18359 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹‘(0g𝐺)) = (0g𝐻))
3635adantr 484 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (𝐹‘(0g𝐺)) = (0g𝐻))
378adantr 484 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → 𝑌 ∈ V)
384symgid 18524 . . . . . . . . 9 (𝑌 ∈ V → ( I ↾ 𝑌) = (0g𝐻))
3937, 38syl 17 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ( I ↾ 𝑌) = (0g𝐻))
4036, 39eqtr4d 2836 . . . . . . 7 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (𝐹‘(0g𝐺)) = ( I ↾ 𝑌))
4140fveq1d 6647 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((𝐹‘(0g𝐺))‘𝑧) = (( I ↾ 𝑌)‘𝑧))
42 fvresi 6912 . . . . . . 7 (𝑧𝑌 → (( I ↾ 𝑌)‘𝑧) = 𝑧)
4342adantl 485 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (( I ↾ 𝑌)‘𝑧) = 𝑧)
4433, 41, 433eqtrd 2837 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = 𝑧)
4511ad2antrr 725 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐹:𝑋⟶(Base‘𝐻))
46 simprr 772 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑣𝑋)
4745, 46ffvelrnd 6829 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣) ∈ (Base‘𝐻))
488ad2antrr 725 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑌 ∈ V)
494, 10elsymgbas 18497 . . . . . . . . . . . 12 (𝑌 ∈ V → ((𝐹𝑣) ∈ (Base‘𝐻) ↔ (𝐹𝑣):𝑌1-1-onto𝑌))
5048, 49syl 17 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑣) ∈ (Base‘𝐻) ↔ (𝐹𝑣):𝑌1-1-onto𝑌))
5147, 50mpbid 235 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣):𝑌1-1-onto𝑌)
52 f1of 6590 . . . . . . . . . 10 ((𝐹𝑣):𝑌1-1-onto𝑌 → (𝐹𝑣):𝑌𝑌)
5351, 52syl 17 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣):𝑌𝑌)
54 simplr 768 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑧𝑌)
55 fvco3 6737 . . . . . . . . 9 (((𝐹𝑣):𝑌𝑌𝑧𝑌) → (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
5653, 54, 55syl2anc 587 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
57 simpll 766 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
58 simprl 770 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑢𝑋)
59 eqid 2798 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
60 eqid 2798 . . . . . . . . . . . 12 (+g𝐻) = (+g𝐻)
619, 59, 60ghmlin 18358 . . . . . . . . . . 11 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑢𝑋𝑣𝑋) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢)(+g𝐻)(𝐹𝑣)))
6257, 58, 46, 61syl3anc 1368 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢)(+g𝐻)(𝐹𝑣)))
6345, 58ffvelrnd 6829 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑢) ∈ (Base‘𝐻))
644, 10, 60symgov 18507 . . . . . . . . . . 11 (((𝐹𝑢) ∈ (Base‘𝐻) ∧ (𝐹𝑣) ∈ (Base‘𝐻)) → ((𝐹𝑢)(+g𝐻)(𝐹𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6563, 47, 64syl2anc 587 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑢)(+g𝐻)(𝐹𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6662, 65eqtrd 2833 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6766fveq1d 6647 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) = (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧))
6853, 54ffvelrnd 6829 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑣)‘𝑧) ∈ 𝑌)
69 fveq2 6645 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
7069fveq1d 6647 . . . . . . . . . 10 (𝑥 = 𝑢 → ((𝐹𝑥)‘𝑦) = ((𝐹𝑢)‘𝑦))
71 fveq2 6645 . . . . . . . . . 10 (𝑦 = ((𝐹𝑣)‘𝑧) → ((𝐹𝑢)‘𝑦) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
72 fvex 6658 . . . . . . . . . 10 ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)) ∈ V
7370, 71, 22, 72ovmpo 7290 . . . . . . . . 9 ((𝑢𝑋 ∧ ((𝐹𝑣)‘𝑧) ∈ 𝑌) → (𝑢 ((𝐹𝑣)‘𝑧)) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
7458, 68, 73syl2anc 587 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢 ((𝐹𝑣)‘𝑧)) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
7556, 67, 743eqtr4d 2843 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) = (𝑢 ((𝐹𝑣)‘𝑧)))
761ad2antrr 725 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐺 ∈ Grp)
779, 59grpcl 18105 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑣𝑋) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
7876, 58, 46, 77syl3anc 1368 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
79 fveq2 6645 . . . . . . . . . 10 (𝑥 = (𝑢(+g𝐺)𝑣) → (𝐹𝑥) = (𝐹‘(𝑢(+g𝐺)𝑣)))
8079fveq1d 6647 . . . . . . . . 9 (𝑥 = (𝑢(+g𝐺)𝑣) → ((𝐹𝑥)‘𝑦) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑦))
81 fveq2 6645 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑦) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
82 fvex 6658 . . . . . . . . 9 ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) ∈ V
8380, 81, 22, 82ovmpo 7290 . . . . . . . 8 (((𝑢(+g𝐺)𝑣) ∈ 𝑋𝑧𝑌) → ((𝑢(+g𝐺)𝑣) 𝑧) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
8478, 54, 83syl2anc 587 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
85 fveq2 6645 . . . . . . . . . . 11 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
8685fveq1d 6647 . . . . . . . . . 10 (𝑥 = 𝑣 → ((𝐹𝑥)‘𝑦) = ((𝐹𝑣)‘𝑦))
87 fveq2 6645 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐹𝑣)‘𝑦) = ((𝐹𝑣)‘𝑧))
88 fvex 6658 . . . . . . . . . 10 ((𝐹𝑣)‘𝑧) ∈ V
8986, 87, 22, 88ovmpo 7290 . . . . . . . . 9 ((𝑣𝑋𝑧𝑌) → (𝑣 𝑧) = ((𝐹𝑣)‘𝑧))
9046, 54, 89syl2anc 587 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣 𝑧) = ((𝐹𝑣)‘𝑧))
9190oveq2d 7151 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢 (𝑣 𝑧)) = (𝑢 ((𝐹𝑣)‘𝑧)))
9275, 84, 913eqtr4d 2843 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
9392ralrimivva 3156 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
9444, 93jca 515 . . . 4 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))
9594ralrimiva 3149 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))
9624, 95jca 515 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))))
979, 59, 25isga 18416 . 2 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))))
981, 8, 96, 97syl21anbrc 1341 1 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∈ (𝐺 GrpAct 𝑌))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  Vcvv 3441  ∅c0 4243   I cid 5424   × cxp 5517   ↾ cres 5521   ∘ ccom 5523  ⟶wf 6320  –1-1-onto→wf1o 6323  ‘cfv 6324  (class class class)co 7135   ∈ cmpo 7137  Basecbs 16477  +gcplusg 16559  0gc0g 16707  Grpcgrp 18097   GrpHom cghm 18350   GrpAct cga 18414  SymGrpcsymg 18490 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-uz 12234  df-fz 12888  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-tset 16578  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-efmnd 18028  df-grp 18100  df-ghm 18351  df-ga 18415  df-symg 18491 This theorem is referenced by:  symgga  18530
 Copyright terms: Public domain W3C validator