MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lactghmga Structured version   Visualization version   GIF version

Theorem lactghmga 19424
Description: The converse of galactghm 19423. The uncurrying of a homomorphism into (SymGrp‘𝑌) is a group action. Thus, group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
lactghmga.x 𝑋 = (Base‘𝐺)
lactghmga.h 𝐻 = (SymGrp‘𝑌)
lactghmga.f = (𝑥𝑋, 𝑦𝑌 ↦ ((𝐹𝑥)‘𝑦))
Assertion
Ref Expression
lactghmga (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∈ (𝐺 GrpAct 𝑌))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem lactghmga
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 19237 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
2 ghmgrp2 19238 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
3 grpn0 18990 . . 3 (𝐻 ∈ Grp → 𝐻 ≠ ∅)
4 lactghmga.h . . . . 5 𝐻 = (SymGrp‘𝑌)
5 fvprc 6897 . . . . 5 𝑌 ∈ V → (SymGrp‘𝑌) = ∅)
64, 5eqtrid 2788 . . . 4 𝑌 ∈ V → 𝐻 = ∅)
76necon1ai 2967 . . 3 (𝐻 ≠ ∅ → 𝑌 ∈ V)
82, 3, 73syl 18 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝑌 ∈ V)
9 lactghmga.x . . . . . . . . . . 11 𝑋 = (Base‘𝐺)
10 eqid 2736 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
119, 10ghmf 19239 . . . . . . . . . 10 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝑋⟶(Base‘𝐻))
1211ffvelcdmda 7103 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ (Base‘𝐻))
138adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → 𝑌 ∈ V)
144, 10elsymgbas 19392 . . . . . . . . . 10 (𝑌 ∈ V → ((𝐹𝑥) ∈ (Base‘𝐻) ↔ (𝐹𝑥):𝑌1-1-onto𝑌))
1513, 14syl 17 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → ((𝐹𝑥) ∈ (Base‘𝐻) ↔ (𝐹𝑥):𝑌1-1-onto𝑌))
1612, 15mpbid 232 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥):𝑌1-1-onto𝑌)
17 f1of 6847 . . . . . . . 8 ((𝐹𝑥):𝑌1-1-onto𝑌 → (𝐹𝑥):𝑌𝑌)
1816, 17syl 17 . . . . . . 7 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥):𝑌𝑌)
1918ffvelcdmda 7103 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) ∧ 𝑦𝑌) → ((𝐹𝑥)‘𝑦) ∈ 𝑌)
2019ralrimiva 3145 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → ∀𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌)
2120ralrimiva 3145 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∀𝑥𝑋𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌)
22 lactghmga.f . . . . 5 = (𝑥𝑋, 𝑦𝑌 ↦ ((𝐹𝑥)‘𝑦))
2322fmpo 8094 . . . 4 (∀𝑥𝑋𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌 :(𝑋 × 𝑌)⟶𝑌)
2421, 23sylib 218 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → :(𝑋 × 𝑌)⟶𝑌)
25 eqid 2736 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
269, 25grpidcl 18984 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
271, 26syl 17 . . . . . . 7 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (0g𝐺) ∈ 𝑋)
28 fveq2 6905 . . . . . . . . 9 (𝑥 = (0g𝐺) → (𝐹𝑥) = (𝐹‘(0g𝐺)))
2928fveq1d 6907 . . . . . . . 8 (𝑥 = (0g𝐺) → ((𝐹𝑥)‘𝑦) = ((𝐹‘(0g𝐺))‘𝑦))
30 fveq2 6905 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐹‘(0g𝐺))‘𝑦) = ((𝐹‘(0g𝐺))‘𝑧))
31 fvex 6918 . . . . . . . 8 ((𝐹‘(0g𝐺))‘𝑧) ∈ V
3229, 30, 22, 31ovmpo 7594 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑧𝑌) → ((0g𝐺) 𝑧) = ((𝐹‘(0g𝐺))‘𝑧))
3327, 32sylan 580 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = ((𝐹‘(0g𝐺))‘𝑧))
34 eqid 2736 . . . . . . . . . 10 (0g𝐻) = (0g𝐻)
3525, 34ghmid 19241 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹‘(0g𝐺)) = (0g𝐻))
3635adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (𝐹‘(0g𝐺)) = (0g𝐻))
378adantr 480 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → 𝑌 ∈ V)
384symgid 19420 . . . . . . . . 9 (𝑌 ∈ V → ( I ↾ 𝑌) = (0g𝐻))
3937, 38syl 17 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ( I ↾ 𝑌) = (0g𝐻))
4036, 39eqtr4d 2779 . . . . . . 7 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (𝐹‘(0g𝐺)) = ( I ↾ 𝑌))
4140fveq1d 6907 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((𝐹‘(0g𝐺))‘𝑧) = (( I ↾ 𝑌)‘𝑧))
42 fvresi 7194 . . . . . . 7 (𝑧𝑌 → (( I ↾ 𝑌)‘𝑧) = 𝑧)
4342adantl 481 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (( I ↾ 𝑌)‘𝑧) = 𝑧)
4433, 41, 433eqtrd 2780 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = 𝑧)
4511ad2antrr 726 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐹:𝑋⟶(Base‘𝐻))
46 simprr 772 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑣𝑋)
4745, 46ffvelcdmd 7104 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣) ∈ (Base‘𝐻))
488ad2antrr 726 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑌 ∈ V)
494, 10elsymgbas 19392 . . . . . . . . . . . 12 (𝑌 ∈ V → ((𝐹𝑣) ∈ (Base‘𝐻) ↔ (𝐹𝑣):𝑌1-1-onto𝑌))
5048, 49syl 17 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑣) ∈ (Base‘𝐻) ↔ (𝐹𝑣):𝑌1-1-onto𝑌))
5147, 50mpbid 232 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣):𝑌1-1-onto𝑌)
52 f1of 6847 . . . . . . . . . 10 ((𝐹𝑣):𝑌1-1-onto𝑌 → (𝐹𝑣):𝑌𝑌)
5351, 52syl 17 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣):𝑌𝑌)
54 simplr 768 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑧𝑌)
55 fvco3 7007 . . . . . . . . 9 (((𝐹𝑣):𝑌𝑌𝑧𝑌) → (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
5653, 54, 55syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
57 simpll 766 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
58 simprl 770 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑢𝑋)
59 eqid 2736 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
60 eqid 2736 . . . . . . . . . . . 12 (+g𝐻) = (+g𝐻)
619, 59, 60ghmlin 19240 . . . . . . . . . . 11 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑢𝑋𝑣𝑋) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢)(+g𝐻)(𝐹𝑣)))
6257, 58, 46, 61syl3anc 1372 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢)(+g𝐻)(𝐹𝑣)))
6345, 58ffvelcdmd 7104 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑢) ∈ (Base‘𝐻))
644, 10, 60symgov 19402 . . . . . . . . . . 11 (((𝐹𝑢) ∈ (Base‘𝐻) ∧ (𝐹𝑣) ∈ (Base‘𝐻)) → ((𝐹𝑢)(+g𝐻)(𝐹𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6563, 47, 64syl2anc 584 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑢)(+g𝐻)(𝐹𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6662, 65eqtrd 2776 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6766fveq1d 6907 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) = (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧))
6853, 54ffvelcdmd 7104 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑣)‘𝑧) ∈ 𝑌)
69 fveq2 6905 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
7069fveq1d 6907 . . . . . . . . . 10 (𝑥 = 𝑢 → ((𝐹𝑥)‘𝑦) = ((𝐹𝑢)‘𝑦))
71 fveq2 6905 . . . . . . . . . 10 (𝑦 = ((𝐹𝑣)‘𝑧) → ((𝐹𝑢)‘𝑦) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
72 fvex 6918 . . . . . . . . . 10 ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)) ∈ V
7370, 71, 22, 72ovmpo 7594 . . . . . . . . 9 ((𝑢𝑋 ∧ ((𝐹𝑣)‘𝑧) ∈ 𝑌) → (𝑢 ((𝐹𝑣)‘𝑧)) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
7458, 68, 73syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢 ((𝐹𝑣)‘𝑧)) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
7556, 67, 743eqtr4d 2786 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) = (𝑢 ((𝐹𝑣)‘𝑧)))
761ad2antrr 726 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐺 ∈ Grp)
779, 59grpcl 18960 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑣𝑋) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
7876, 58, 46, 77syl3anc 1372 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
79 fveq2 6905 . . . . . . . . . 10 (𝑥 = (𝑢(+g𝐺)𝑣) → (𝐹𝑥) = (𝐹‘(𝑢(+g𝐺)𝑣)))
8079fveq1d 6907 . . . . . . . . 9 (𝑥 = (𝑢(+g𝐺)𝑣) → ((𝐹𝑥)‘𝑦) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑦))
81 fveq2 6905 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑦) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
82 fvex 6918 . . . . . . . . 9 ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) ∈ V
8380, 81, 22, 82ovmpo 7594 . . . . . . . 8 (((𝑢(+g𝐺)𝑣) ∈ 𝑋𝑧𝑌) → ((𝑢(+g𝐺)𝑣) 𝑧) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
8478, 54, 83syl2anc 584 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
85 fveq2 6905 . . . . . . . . . . 11 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
8685fveq1d 6907 . . . . . . . . . 10 (𝑥 = 𝑣 → ((𝐹𝑥)‘𝑦) = ((𝐹𝑣)‘𝑦))
87 fveq2 6905 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐹𝑣)‘𝑦) = ((𝐹𝑣)‘𝑧))
88 fvex 6918 . . . . . . . . . 10 ((𝐹𝑣)‘𝑧) ∈ V
8986, 87, 22, 88ovmpo 7594 . . . . . . . . 9 ((𝑣𝑋𝑧𝑌) → (𝑣 𝑧) = ((𝐹𝑣)‘𝑧))
9046, 54, 89syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣 𝑧) = ((𝐹𝑣)‘𝑧))
9190oveq2d 7448 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢 (𝑣 𝑧)) = (𝑢 ((𝐹𝑣)‘𝑧)))
9275, 84, 913eqtr4d 2786 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
9392ralrimivva 3201 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
9444, 93jca 511 . . . 4 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))
9594ralrimiva 3145 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))
9624, 95jca 511 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))))
979, 59, 25isga 19310 . 2 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))))
981, 8, 96, 97syl21anbrc 1344 1 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∈ (𝐺 GrpAct 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  Vcvv 3479  c0 4332   I cid 5576   × cxp 5682  cres 5686  ccom 5688  wf 6556  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  cmpo 7434  Basecbs 17248  +gcplusg 17298  0gc0g 17485  Grpcgrp 18952   GrpHom cghm 19231   GrpAct cga 19308  SymGrpcsymg 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-tset 17317  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-efmnd 18883  df-grp 18955  df-ghm 19232  df-ga 19309  df-symg 19388
This theorem is referenced by:  symgga  19426
  Copyright terms: Public domain W3C validator