MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lactghmga Structured version   Visualization version   GIF version

Theorem lactghmga 19195
Description: The converse of galactghm 19194. The uncurrying of a homomorphism into (SymGrp‘𝑌) is a group action. Thus, group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
lactghmga.x 𝑋 = (Base‘𝐺)
lactghmga.h 𝐻 = (SymGrp‘𝑌)
lactghmga.f = (𝑥𝑋, 𝑦𝑌 ↦ ((𝐹𝑥)‘𝑦))
Assertion
Ref Expression
lactghmga (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∈ (𝐺 GrpAct 𝑌))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem lactghmga
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 19018 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
2 ghmgrp2 19019 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
3 grpn0 18790 . . 3 (𝐻 ∈ Grp → 𝐻 ≠ ∅)
4 lactghmga.h . . . . 5 𝐻 = (SymGrp‘𝑌)
5 fvprc 6838 . . . . 5 𝑌 ∈ V → (SymGrp‘𝑌) = ∅)
64, 5eqtrid 2785 . . . 4 𝑌 ∈ V → 𝐻 = ∅)
76necon1ai 2968 . . 3 (𝐻 ≠ ∅ → 𝑌 ∈ V)
82, 3, 73syl 18 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝑌 ∈ V)
9 lactghmga.x . . . . . . . . . . 11 𝑋 = (Base‘𝐺)
10 eqid 2733 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
119, 10ghmf 19020 . . . . . . . . . 10 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝑋⟶(Base‘𝐻))
1211ffvelcdmda 7039 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ (Base‘𝐻))
138adantr 482 . . . . . . . . . 10 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → 𝑌 ∈ V)
144, 10elsymgbas 19163 . . . . . . . . . 10 (𝑌 ∈ V → ((𝐹𝑥) ∈ (Base‘𝐻) ↔ (𝐹𝑥):𝑌1-1-onto𝑌))
1513, 14syl 17 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → ((𝐹𝑥) ∈ (Base‘𝐻) ↔ (𝐹𝑥):𝑌1-1-onto𝑌))
1612, 15mpbid 231 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥):𝑌1-1-onto𝑌)
17 f1of 6788 . . . . . . . 8 ((𝐹𝑥):𝑌1-1-onto𝑌 → (𝐹𝑥):𝑌𝑌)
1816, 17syl 17 . . . . . . 7 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥):𝑌𝑌)
1918ffvelcdmda 7039 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) ∧ 𝑦𝑌) → ((𝐹𝑥)‘𝑦) ∈ 𝑌)
2019ralrimiva 3140 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → ∀𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌)
2120ralrimiva 3140 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∀𝑥𝑋𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌)
22 lactghmga.f . . . . 5 = (𝑥𝑋, 𝑦𝑌 ↦ ((𝐹𝑥)‘𝑦))
2322fmpo 8004 . . . 4 (∀𝑥𝑋𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌 :(𝑋 × 𝑌)⟶𝑌)
2421, 23sylib 217 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → :(𝑋 × 𝑌)⟶𝑌)
25 eqid 2733 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
269, 25grpidcl 18786 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
271, 26syl 17 . . . . . . 7 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (0g𝐺) ∈ 𝑋)
28 fveq2 6846 . . . . . . . . 9 (𝑥 = (0g𝐺) → (𝐹𝑥) = (𝐹‘(0g𝐺)))
2928fveq1d 6848 . . . . . . . 8 (𝑥 = (0g𝐺) → ((𝐹𝑥)‘𝑦) = ((𝐹‘(0g𝐺))‘𝑦))
30 fveq2 6846 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐹‘(0g𝐺))‘𝑦) = ((𝐹‘(0g𝐺))‘𝑧))
31 fvex 6859 . . . . . . . 8 ((𝐹‘(0g𝐺))‘𝑧) ∈ V
3229, 30, 22, 31ovmpo 7519 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑧𝑌) → ((0g𝐺) 𝑧) = ((𝐹‘(0g𝐺))‘𝑧))
3327, 32sylan 581 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = ((𝐹‘(0g𝐺))‘𝑧))
34 eqid 2733 . . . . . . . . . 10 (0g𝐻) = (0g𝐻)
3525, 34ghmid 19022 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹‘(0g𝐺)) = (0g𝐻))
3635adantr 482 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (𝐹‘(0g𝐺)) = (0g𝐻))
378adantr 482 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → 𝑌 ∈ V)
384symgid 19191 . . . . . . . . 9 (𝑌 ∈ V → ( I ↾ 𝑌) = (0g𝐻))
3937, 38syl 17 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ( I ↾ 𝑌) = (0g𝐻))
4036, 39eqtr4d 2776 . . . . . . 7 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (𝐹‘(0g𝐺)) = ( I ↾ 𝑌))
4140fveq1d 6848 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((𝐹‘(0g𝐺))‘𝑧) = (( I ↾ 𝑌)‘𝑧))
42 fvresi 7123 . . . . . . 7 (𝑧𝑌 → (( I ↾ 𝑌)‘𝑧) = 𝑧)
4342adantl 483 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (( I ↾ 𝑌)‘𝑧) = 𝑧)
4433, 41, 433eqtrd 2777 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = 𝑧)
4511ad2antrr 725 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐹:𝑋⟶(Base‘𝐻))
46 simprr 772 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑣𝑋)
4745, 46ffvelcdmd 7040 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣) ∈ (Base‘𝐻))
488ad2antrr 725 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑌 ∈ V)
494, 10elsymgbas 19163 . . . . . . . . . . . 12 (𝑌 ∈ V → ((𝐹𝑣) ∈ (Base‘𝐻) ↔ (𝐹𝑣):𝑌1-1-onto𝑌))
5048, 49syl 17 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑣) ∈ (Base‘𝐻) ↔ (𝐹𝑣):𝑌1-1-onto𝑌))
5147, 50mpbid 231 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣):𝑌1-1-onto𝑌)
52 f1of 6788 . . . . . . . . . 10 ((𝐹𝑣):𝑌1-1-onto𝑌 → (𝐹𝑣):𝑌𝑌)
5351, 52syl 17 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣):𝑌𝑌)
54 simplr 768 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑧𝑌)
55 fvco3 6944 . . . . . . . . 9 (((𝐹𝑣):𝑌𝑌𝑧𝑌) → (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
5653, 54, 55syl2anc 585 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
57 simpll 766 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
58 simprl 770 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑢𝑋)
59 eqid 2733 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
60 eqid 2733 . . . . . . . . . . . 12 (+g𝐻) = (+g𝐻)
619, 59, 60ghmlin 19021 . . . . . . . . . . 11 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑢𝑋𝑣𝑋) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢)(+g𝐻)(𝐹𝑣)))
6257, 58, 46, 61syl3anc 1372 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢)(+g𝐻)(𝐹𝑣)))
6345, 58ffvelcdmd 7040 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑢) ∈ (Base‘𝐻))
644, 10, 60symgov 19173 . . . . . . . . . . 11 (((𝐹𝑢) ∈ (Base‘𝐻) ∧ (𝐹𝑣) ∈ (Base‘𝐻)) → ((𝐹𝑢)(+g𝐻)(𝐹𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6563, 47, 64syl2anc 585 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑢)(+g𝐻)(𝐹𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6662, 65eqtrd 2773 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6766fveq1d 6848 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) = (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧))
6853, 54ffvelcdmd 7040 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑣)‘𝑧) ∈ 𝑌)
69 fveq2 6846 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
7069fveq1d 6848 . . . . . . . . . 10 (𝑥 = 𝑢 → ((𝐹𝑥)‘𝑦) = ((𝐹𝑢)‘𝑦))
71 fveq2 6846 . . . . . . . . . 10 (𝑦 = ((𝐹𝑣)‘𝑧) → ((𝐹𝑢)‘𝑦) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
72 fvex 6859 . . . . . . . . . 10 ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)) ∈ V
7370, 71, 22, 72ovmpo 7519 . . . . . . . . 9 ((𝑢𝑋 ∧ ((𝐹𝑣)‘𝑧) ∈ 𝑌) → (𝑢 ((𝐹𝑣)‘𝑧)) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
7458, 68, 73syl2anc 585 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢 ((𝐹𝑣)‘𝑧)) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
7556, 67, 743eqtr4d 2783 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) = (𝑢 ((𝐹𝑣)‘𝑧)))
761ad2antrr 725 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐺 ∈ Grp)
779, 59grpcl 18764 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑣𝑋) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
7876, 58, 46, 77syl3anc 1372 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
79 fveq2 6846 . . . . . . . . . 10 (𝑥 = (𝑢(+g𝐺)𝑣) → (𝐹𝑥) = (𝐹‘(𝑢(+g𝐺)𝑣)))
8079fveq1d 6848 . . . . . . . . 9 (𝑥 = (𝑢(+g𝐺)𝑣) → ((𝐹𝑥)‘𝑦) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑦))
81 fveq2 6846 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑦) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
82 fvex 6859 . . . . . . . . 9 ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) ∈ V
8380, 81, 22, 82ovmpo 7519 . . . . . . . 8 (((𝑢(+g𝐺)𝑣) ∈ 𝑋𝑧𝑌) → ((𝑢(+g𝐺)𝑣) 𝑧) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
8478, 54, 83syl2anc 585 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
85 fveq2 6846 . . . . . . . . . . 11 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
8685fveq1d 6848 . . . . . . . . . 10 (𝑥 = 𝑣 → ((𝐹𝑥)‘𝑦) = ((𝐹𝑣)‘𝑦))
87 fveq2 6846 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐹𝑣)‘𝑦) = ((𝐹𝑣)‘𝑧))
88 fvex 6859 . . . . . . . . . 10 ((𝐹𝑣)‘𝑧) ∈ V
8986, 87, 22, 88ovmpo 7519 . . . . . . . . 9 ((𝑣𝑋𝑧𝑌) → (𝑣 𝑧) = ((𝐹𝑣)‘𝑧))
9046, 54, 89syl2anc 585 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣 𝑧) = ((𝐹𝑣)‘𝑧))
9190oveq2d 7377 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢 (𝑣 𝑧)) = (𝑢 ((𝐹𝑣)‘𝑧)))
9275, 84, 913eqtr4d 2783 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
9392ralrimivva 3194 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
9444, 93jca 513 . . . 4 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))
9594ralrimiva 3140 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))
9624, 95jca 513 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))))
979, 59, 25isga 19079 . 2 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))))
981, 8, 96, 97syl21anbrc 1345 1 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∈ (𝐺 GrpAct 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2940  wral 3061  Vcvv 3447  c0 4286   I cid 5534   × cxp 5635  cres 5639  ccom 5641  wf 6496  1-1-ontowf1o 6499  cfv 6500  (class class class)co 7361  cmpo 7363  Basecbs 17091  +gcplusg 17141  0gc0g 17329  Grpcgrp 18756   GrpHom cghm 19013   GrpAct cga 19077  SymGrpcsymg 19156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-tset 17160  df-0g 17331  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-submnd 18610  df-efmnd 18687  df-grp 18759  df-ghm 19014  df-ga 19078  df-symg 19157
This theorem is referenced by:  symgga  19197
  Copyright terms: Public domain W3C validator