MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lactghmga Structured version   Visualization version   GIF version

Theorem lactghmga 19319
Description: The converse of galactghm 19318. The uncurrying of a homomorphism into (SymGrp‘𝑌) is a group action. Thus, group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
lactghmga.x 𝑋 = (Base‘𝐺)
lactghmga.h 𝐻 = (SymGrp‘𝑌)
lactghmga.f = (𝑥𝑋, 𝑦𝑌 ↦ ((𝐹𝑥)‘𝑦))
Assertion
Ref Expression
lactghmga (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∈ (𝐺 GrpAct 𝑌))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem lactghmga
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 19132 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
2 ghmgrp2 19133 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
3 grpn0 18885 . . 3 (𝐻 ∈ Grp → 𝐻 ≠ ∅)
4 lactghmga.h . . . . 5 𝐻 = (SymGrp‘𝑌)
5 fvprc 6832 . . . . 5 𝑌 ∈ V → (SymGrp‘𝑌) = ∅)
64, 5eqtrid 2776 . . . 4 𝑌 ∈ V → 𝐻 = ∅)
76necon1ai 2952 . . 3 (𝐻 ≠ ∅ → 𝑌 ∈ V)
82, 3, 73syl 18 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝑌 ∈ V)
9 lactghmga.x . . . . . . . . . . 11 𝑋 = (Base‘𝐺)
10 eqid 2729 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
119, 10ghmf 19134 . . . . . . . . . 10 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝑋⟶(Base‘𝐻))
1211ffvelcdmda 7038 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ (Base‘𝐻))
138adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → 𝑌 ∈ V)
144, 10elsymgbas 19288 . . . . . . . . . 10 (𝑌 ∈ V → ((𝐹𝑥) ∈ (Base‘𝐻) ↔ (𝐹𝑥):𝑌1-1-onto𝑌))
1513, 14syl 17 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → ((𝐹𝑥) ∈ (Base‘𝐻) ↔ (𝐹𝑥):𝑌1-1-onto𝑌))
1612, 15mpbid 232 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥):𝑌1-1-onto𝑌)
17 f1of 6782 . . . . . . . 8 ((𝐹𝑥):𝑌1-1-onto𝑌 → (𝐹𝑥):𝑌𝑌)
1816, 17syl 17 . . . . . . 7 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → (𝐹𝑥):𝑌𝑌)
1918ffvelcdmda 7038 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) ∧ 𝑦𝑌) → ((𝐹𝑥)‘𝑦) ∈ 𝑌)
2019ralrimiva 3125 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋) → ∀𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌)
2120ralrimiva 3125 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∀𝑥𝑋𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌)
22 lactghmga.f . . . . 5 = (𝑥𝑋, 𝑦𝑌 ↦ ((𝐹𝑥)‘𝑦))
2322fmpo 8026 . . . 4 (∀𝑥𝑋𝑦𝑌 ((𝐹𝑥)‘𝑦) ∈ 𝑌 :(𝑋 × 𝑌)⟶𝑌)
2421, 23sylib 218 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → :(𝑋 × 𝑌)⟶𝑌)
25 eqid 2729 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
269, 25grpidcl 18879 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
271, 26syl 17 . . . . . . 7 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (0g𝐺) ∈ 𝑋)
28 fveq2 6840 . . . . . . . . 9 (𝑥 = (0g𝐺) → (𝐹𝑥) = (𝐹‘(0g𝐺)))
2928fveq1d 6842 . . . . . . . 8 (𝑥 = (0g𝐺) → ((𝐹𝑥)‘𝑦) = ((𝐹‘(0g𝐺))‘𝑦))
30 fveq2 6840 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐹‘(0g𝐺))‘𝑦) = ((𝐹‘(0g𝐺))‘𝑧))
31 fvex 6853 . . . . . . . 8 ((𝐹‘(0g𝐺))‘𝑧) ∈ V
3229, 30, 22, 31ovmpo 7529 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑧𝑌) → ((0g𝐺) 𝑧) = ((𝐹‘(0g𝐺))‘𝑧))
3327, 32sylan 580 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = ((𝐹‘(0g𝐺))‘𝑧))
34 eqid 2729 . . . . . . . . . 10 (0g𝐻) = (0g𝐻)
3525, 34ghmid 19136 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹‘(0g𝐺)) = (0g𝐻))
3635adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (𝐹‘(0g𝐺)) = (0g𝐻))
378adantr 480 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → 𝑌 ∈ V)
384symgid 19315 . . . . . . . . 9 (𝑌 ∈ V → ( I ↾ 𝑌) = (0g𝐻))
3937, 38syl 17 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ( I ↾ 𝑌) = (0g𝐻))
4036, 39eqtr4d 2767 . . . . . . 7 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (𝐹‘(0g𝐺)) = ( I ↾ 𝑌))
4140fveq1d 6842 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((𝐹‘(0g𝐺))‘𝑧) = (( I ↾ 𝑌)‘𝑧))
42 fvresi 7129 . . . . . . 7 (𝑧𝑌 → (( I ↾ 𝑌)‘𝑧) = 𝑧)
4342adantl 481 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (( I ↾ 𝑌)‘𝑧) = 𝑧)
4433, 41, 433eqtrd 2768 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = 𝑧)
4511ad2antrr 726 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐹:𝑋⟶(Base‘𝐻))
46 simprr 772 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑣𝑋)
4745, 46ffvelcdmd 7039 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣) ∈ (Base‘𝐻))
488ad2antrr 726 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑌 ∈ V)
494, 10elsymgbas 19288 . . . . . . . . . . . 12 (𝑌 ∈ V → ((𝐹𝑣) ∈ (Base‘𝐻) ↔ (𝐹𝑣):𝑌1-1-onto𝑌))
5048, 49syl 17 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑣) ∈ (Base‘𝐻) ↔ (𝐹𝑣):𝑌1-1-onto𝑌))
5147, 50mpbid 232 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣):𝑌1-1-onto𝑌)
52 f1of 6782 . . . . . . . . . 10 ((𝐹𝑣):𝑌1-1-onto𝑌 → (𝐹𝑣):𝑌𝑌)
5351, 52syl 17 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑣):𝑌𝑌)
54 simplr 768 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑧𝑌)
55 fvco3 6942 . . . . . . . . 9 (((𝐹𝑣):𝑌𝑌𝑧𝑌) → (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
5653, 54, 55syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
57 simpll 766 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
58 simprl 770 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝑢𝑋)
59 eqid 2729 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
60 eqid 2729 . . . . . . . . . . . 12 (+g𝐻) = (+g𝐻)
619, 59, 60ghmlin 19135 . . . . . . . . . . 11 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑢𝑋𝑣𝑋) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢)(+g𝐻)(𝐹𝑣)))
6257, 58, 46, 61syl3anc 1373 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢)(+g𝐻)(𝐹𝑣)))
6345, 58ffvelcdmd 7039 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹𝑢) ∈ (Base‘𝐻))
644, 10, 60symgov 19298 . . . . . . . . . . 11 (((𝐹𝑢) ∈ (Base‘𝐻) ∧ (𝐹𝑣) ∈ (Base‘𝐻)) → ((𝐹𝑢)(+g𝐻)(𝐹𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6563, 47, 64syl2anc 584 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑢)(+g𝐻)(𝐹𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6662, 65eqtrd 2764 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝐹‘(𝑢(+g𝐺)𝑣)) = ((𝐹𝑢) ∘ (𝐹𝑣)))
6766fveq1d 6842 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) = (((𝐹𝑢) ∘ (𝐹𝑣))‘𝑧))
6853, 54ffvelcdmd 7039 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹𝑣)‘𝑧) ∈ 𝑌)
69 fveq2 6840 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
7069fveq1d 6842 . . . . . . . . . 10 (𝑥 = 𝑢 → ((𝐹𝑥)‘𝑦) = ((𝐹𝑢)‘𝑦))
71 fveq2 6840 . . . . . . . . . 10 (𝑦 = ((𝐹𝑣)‘𝑧) → ((𝐹𝑢)‘𝑦) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
72 fvex 6853 . . . . . . . . . 10 ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)) ∈ V
7370, 71, 22, 72ovmpo 7529 . . . . . . . . 9 ((𝑢𝑋 ∧ ((𝐹𝑣)‘𝑧) ∈ 𝑌) → (𝑢 ((𝐹𝑣)‘𝑧)) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
7458, 68, 73syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢 ((𝐹𝑣)‘𝑧)) = ((𝐹𝑢)‘((𝐹𝑣)‘𝑧)))
7556, 67, 743eqtr4d 2774 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) = (𝑢 ((𝐹𝑣)‘𝑧)))
761ad2antrr 726 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → 𝐺 ∈ Grp)
779, 59grpcl 18855 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑣𝑋) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
7876, 58, 46, 77syl3anc 1373 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
79 fveq2 6840 . . . . . . . . . 10 (𝑥 = (𝑢(+g𝐺)𝑣) → (𝐹𝑥) = (𝐹‘(𝑢(+g𝐺)𝑣)))
8079fveq1d 6842 . . . . . . . . 9 (𝑥 = (𝑢(+g𝐺)𝑣) → ((𝐹𝑥)‘𝑦) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑦))
81 fveq2 6840 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑦) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
82 fvex 6853 . . . . . . . . 9 ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧) ∈ V
8380, 81, 22, 82ovmpo 7529 . . . . . . . 8 (((𝑢(+g𝐺)𝑣) ∈ 𝑋𝑧𝑌) → ((𝑢(+g𝐺)𝑣) 𝑧) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
8478, 54, 83syl2anc 584 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = ((𝐹‘(𝑢(+g𝐺)𝑣))‘𝑧))
85 fveq2 6840 . . . . . . . . . . 11 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
8685fveq1d 6842 . . . . . . . . . 10 (𝑥 = 𝑣 → ((𝐹𝑥)‘𝑦) = ((𝐹𝑣)‘𝑦))
87 fveq2 6840 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐹𝑣)‘𝑦) = ((𝐹𝑣)‘𝑧))
88 fvex 6853 . . . . . . . . . 10 ((𝐹𝑣)‘𝑧) ∈ V
8986, 87, 22, 88ovmpo 7529 . . . . . . . . 9 ((𝑣𝑋𝑧𝑌) → (𝑣 𝑧) = ((𝐹𝑣)‘𝑧))
9046, 54, 89syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣 𝑧) = ((𝐹𝑣)‘𝑧))
9190oveq2d 7385 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢 (𝑣 𝑧)) = (𝑢 ((𝐹𝑣)‘𝑧)))
9275, 84, 913eqtr4d 2774 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
9392ralrimivva 3178 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
9444, 93jca 511 . . . 4 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧𝑌) → (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))
9594ralrimiva 3125 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))
9624, 95jca 511 . 2 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))))
979, 59, 25isga 19205 . 2 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑧𝑌 (((0g𝐺) 𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))))
981, 8, 96, 97syl21anbrc 1345 1 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ∈ (𝐺 GrpAct 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  c0 4292   I cid 5525   × cxp 5629  cres 5633  ccom 5635  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18847   GrpHom cghm 19126   GrpAct cga 19203  SymGrpcsymg 19283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-tset 17215  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-efmnd 18778  df-grp 18850  df-ghm 19127  df-ga 19204  df-symg 19284
This theorem is referenced by:  symgga  19321
  Copyright terms: Public domain W3C validator