MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt0ne0d Structured version   Visualization version   GIF version

Theorem lt0ne0d 11194
Description: Something less than zero is not zero. Deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
lt0ne0d.1 (𝜑𝐴 < 0)
Assertion
Ref Expression
lt0ne0d (𝜑𝐴 ≠ 0)

Proof of Theorem lt0ne0d
StepHypRef Expression
1 lt0ne0d.1 . 2 (𝜑𝐴 < 0)
2 0re 10632 . . . . 5 0 ∈ ℝ
32ltnri 10738 . . . 4 ¬ 0 < 0
4 breq1 5045 . . . 4 (𝐴 = 0 → (𝐴 < 0 ↔ 0 < 0))
53, 4mtbiri 330 . . 3 (𝐴 = 0 → ¬ 𝐴 < 0)
65necon2ai 3040 . 2 (𝐴 < 0 → 𝐴 ≠ 0)
71, 6syl 17 1 (𝜑𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wne 3011   class class class wbr 5042  0cc0 10526   < clt 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-addrcl 10587  ax-rnegex 10597  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-ltxr 10669
This theorem is referenced by:  nnne0  11659  mul2lt0rlt0  12479  mbfmulc2lem  24249  coseq00topi  25093  argimlt0  25202  atantan  25507  bcm1n  30528  sgnmul  31874  sgnsub  31876  sgn0bi  31879  sgnmulsgn  31881  signsvfnn  31930  reclt0d  41961  requad1  44079
  Copyright terms: Public domain W3C validator