![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lt0ne0d | Structured version Visualization version GIF version |
Description: Something less than zero is not zero. Deduction form. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
lt0ne0d.1 | ⊢ (𝜑 → 𝐴 < 0) |
Ref | Expression |
---|---|
lt0ne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt0ne0d.1 | . 2 ⊢ (𝜑 → 𝐴 < 0) | |
2 | 0re 11261 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | 2 | ltnri 11368 | . . . 4 ⊢ ¬ 0 < 0 |
4 | breq1 5151 | . . . 4 ⊢ (𝐴 = 0 → (𝐴 < 0 ↔ 0 < 0)) | |
5 | 3, 4 | mtbiri 327 | . . 3 ⊢ (𝐴 = 0 → ¬ 𝐴 < 0) |
6 | 5 | necon2ai 2968 | . 2 ⊢ (𝐴 < 0 → 𝐴 ≠ 0) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2938 class class class wbr 5148 0cc0 11153 < clt 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 |
This theorem is referenced by: nnne0 12298 mul2lt0rlt0 13135 mbfmulc2lem 25696 coseq00topi 26559 argimlt0 26670 atantan 26981 bcm1n 32803 sgnmul 34524 sgnsub 34526 sgn0bi 34529 sgnmulsgn 34531 signsvfnn 34580 sn-nnne0 42455 reclt0d 45337 requad1 47547 |
Copyright terms: Public domain | W3C validator |