MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt0ne0d Structured version   Visualization version   GIF version

Theorem lt0ne0d 11807
Description: Something less than zero is not zero. Deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
lt0ne0d.1 (𝜑𝐴 < 0)
Assertion
Ref Expression
lt0ne0d (𝜑𝐴 ≠ 0)

Proof of Theorem lt0ne0d
StepHypRef Expression
1 lt0ne0d.1 . 2 (𝜑𝐴 < 0)
2 0re 11242 . . . . 5 0 ∈ ℝ
32ltnri 11349 . . . 4 ¬ 0 < 0
4 breq1 5127 . . . 4 (𝐴 = 0 → (𝐴 < 0 ↔ 0 < 0))
53, 4mtbiri 327 . . 3 (𝐴 = 0 → ¬ 𝐴 < 0)
65necon2ai 2962 . 2 (𝐴 < 0 → 𝐴 ≠ 0)
71, 6syl 17 1 (𝜑𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2933   class class class wbr 5124  0cc0 11134   < clt 11274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-addrcl 11195  ax-rnegex 11205  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279
This theorem is referenced by:  nnne0  12279  mul2lt0rlt0  13116  mbfmulc2lem  25605  coseq00topi  26468  argimlt0  26579  atantan  26890  bcm1n  32777  sgnmul  32819  sgnsub  32821  sgn0bi  32824  sgnmulsgn  32826  cos9thpiminplylem1  33821  signsvfnn  34623  sn-nnne0  42458  reclt0d  45381  requad1  47603
  Copyright terms: Public domain W3C validator