MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt0ne0d Structured version   Visualization version   GIF version

Theorem lt0ne0d 11682
Description: Something less than zero is not zero. Deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
lt0ne0d.1 (𝜑𝐴 < 0)
Assertion
Ref Expression
lt0ne0d (𝜑𝐴 ≠ 0)

Proof of Theorem lt0ne0d
StepHypRef Expression
1 lt0ne0d.1 . 2 (𝜑𝐴 < 0)
2 0re 11114 . . . . 5 0 ∈ ℝ
32ltnri 11222 . . . 4 ¬ 0 < 0
4 breq1 5092 . . . 4 (𝐴 = 0 → (𝐴 < 0 ↔ 0 < 0))
53, 4mtbiri 327 . . 3 (𝐴 = 0 → ¬ 𝐴 < 0)
65necon2ai 2957 . 2 (𝐴 < 0 → 𝐴 ≠ 0)
71, 6syl 17 1 (𝜑𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wne 2928   class class class wbr 5089  0cc0 11006   < clt 11146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-addrcl 11067  ax-rnegex 11077  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151
This theorem is referenced by:  nnne0  12159  mul2lt0rlt0  12994  mbfmulc2lem  25575  coseq00topi  26438  argimlt0  26549  atantan  26860  bcm1n  32777  sgnmul  32818  sgnsub  32820  sgn0bi  32823  sgnmulsgn  32825  cos9thpiminplylem1  33795  signsvfnn  34599  sn-nnne0  42563  sn-reclt0d  42584  mulltgt0d  42585  mullt0b1d  42586  mullt0b2d  42587  sn-mullt0d  42588  reclt0d  45495  requad1  47732
  Copyright terms: Public domain W3C validator