| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lt0ne0d | Structured version Visualization version GIF version | ||
| Description: Something less than zero is not zero. Deduction form. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| lt0ne0d.1 | ⊢ (𝜑 → 𝐴 < 0) |
| Ref | Expression |
|---|---|
| lt0ne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt0ne0d.1 | . 2 ⊢ (𝜑 → 𝐴 < 0) | |
| 2 | 0re 11114 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 3 | 2 | ltnri 11222 | . . . 4 ⊢ ¬ 0 < 0 |
| 4 | breq1 5092 | . . . 4 ⊢ (𝐴 = 0 → (𝐴 < 0 ↔ 0 < 0)) | |
| 5 | 3, 4 | mtbiri 327 | . . 3 ⊢ (𝐴 = 0 → ¬ 𝐴 < 0) |
| 6 | 5 | necon2ai 2957 | . 2 ⊢ (𝐴 < 0 → 𝐴 ≠ 0) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 class class class wbr 5089 0cc0 11006 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 |
| This theorem is referenced by: nnne0 12159 mul2lt0rlt0 12994 mbfmulc2lem 25575 coseq00topi 26438 argimlt0 26549 atantan 26860 bcm1n 32777 sgnmul 32818 sgnsub 32820 sgn0bi 32823 sgnmulsgn 32825 cos9thpiminplylem1 33795 signsvfnn 34599 sn-nnne0 42563 sn-reclt0d 42584 mulltgt0d 42585 mullt0b1d 42586 mullt0b2d 42587 sn-mullt0d 42588 reclt0d 45495 requad1 47732 |
| Copyright terms: Public domain | W3C validator |