MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim2 Structured version   Visualization version   GIF version

Theorem geolim2 15064
Description: The partial sums in the geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1)... converge to ((𝐴𝑀) / (1 − 𝐴)). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
geolim.1 (𝜑𝐴 ∈ ℂ)
geolim.2 (𝜑 → (abs‘𝐴) < 1)
geolim2.3 (𝜑𝑀 ∈ ℕ0)
geolim2.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
Assertion
Ref Expression
geolim2 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘

Proof of Theorem geolim2
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2797 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 geolim2.3 . . . 4 (𝜑𝑀 ∈ ℕ0)
32nn0zd 11939 . . 3 (𝜑𝑀 ∈ ℤ)
4 geolim2.4 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
5 geolim.1 . . . . 5 (𝜑𝐴 ∈ ℂ)
65adantr 481 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
7 eluznn0 12170 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
82, 7sylan 580 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
96, 8expcld 13364 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴𝑘) ∈ ℂ)
10 oveq2 7031 . . . . . . . 8 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
11 eqid 2797 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
12 ovex 7055 . . . . . . . 8 (𝐴𝑘) ∈ V
1310, 11, 12fvmpt 6642 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
148, 13syl 17 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
1514, 4eqtr4d 2836 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐹𝑘))
163, 15seqfeq 13249 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) = seq𝑀( + , 𝐹))
17 geolim.2 . . . . . . 7 (𝜑 → (abs‘𝐴) < 1)
18 oveq2 7031 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
19 ovex 7055 . . . . . . . . 9 (𝐴𝑗) ∈ V
2018, 11, 19fvmpt 6642 . . . . . . . 8 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
2120adantl 482 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
225, 17, 21geolim 15063 . . . . . 6 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
23 seqex 13225 . . . . . . 7 seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V
24 ovex 7055 . . . . . . 7 (1 / (1 − 𝐴)) ∈ V
2523, 24breldm 5670 . . . . . 6 (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
2622, 25syl 17 . . . . 5 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
27 nn0uz 12133 . . . . . 6 0 = (ℤ‘0)
28 expcl 13301 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
295, 28sylan 580 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
3021, 29eqeltrd 2885 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) ∈ ℂ)
3127, 2, 30iserex 14851 . . . . 5 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ))
3226, 31mpbid 233 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
3316, 32eqeltrrd 2886 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
341, 3, 4, 9, 33isumclim2 14950 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
3513adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
36 expcl 13301 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
375, 36sylan 580 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3827, 1, 2, 35, 37, 26isumsplit 15032 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
39 0zd 11847 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
4027, 39, 35, 37, 22isumclim 14949 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
4138, 40eqtr3d 2835 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (1 / (1 − 𝐴)))
42 1re 10494 . . . . . . . . . . 11 1 ∈ ℝ
4342ltnri 10602 . . . . . . . . . 10 ¬ 1 < 1
44 fveq2 6545 . . . . . . . . . . . 12 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
45 abs1 14495 . . . . . . . . . . . 12 (abs‘1) = 1
4644, 45syl6eq 2849 . . . . . . . . . . 11 (𝐴 = 1 → (abs‘𝐴) = 1)
4746breq1d 4978 . . . . . . . . . 10 (𝐴 = 1 → ((abs‘𝐴) < 1 ↔ 1 < 1))
4843, 47mtbiri 328 . . . . . . . . 9 (𝐴 = 1 → ¬ (abs‘𝐴) < 1)
4948necon2ai 3015 . . . . . . . 8 ((abs‘𝐴) < 1 → 𝐴 ≠ 1)
5017, 49syl 17 . . . . . . 7 (𝜑𝐴 ≠ 1)
515, 50, 2geoser 15059 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) = ((1 − (𝐴𝑀)) / (1 − 𝐴)))
5251oveq1d 7038 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
5341, 52eqtr3d 2835 . . . 4 (𝜑 → (1 / (1 − 𝐴)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
5453oveq1d 7038 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
55 1cnd 10489 . . . . 5 (𝜑 → 1 ∈ ℂ)
56 ax-1cn 10448 . . . . . 6 1 ∈ ℂ
575, 2expcld 13364 . . . . . 6 (𝜑 → (𝐴𝑀) ∈ ℂ)
58 subcl 10738 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (𝐴𝑀)) ∈ ℂ)
5956, 57, 58sylancr 587 . . . . 5 (𝜑 → (1 − (𝐴𝑀)) ∈ ℂ)
60 subcl 10738 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
6156, 5, 60sylancr 587 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℂ)
6250necomd 3041 . . . . . 6 (𝜑 → 1 ≠ 𝐴)
63 subeq0 10766 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
6456, 5, 63sylancr 587 . . . . . . 7 (𝜑 → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
6564necon3bid 3030 . . . . . 6 (𝜑 → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
6662, 65mpbird 258 . . . . 5 (𝜑 → (1 − 𝐴) ≠ 0)
6755, 59, 61, 66divsubdird 11309 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
68 nncan 10769 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
6956, 57, 68sylancr 587 . . . . 5 (𝜑 → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
7069oveq1d 7038 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((𝐴𝑀) / (1 − 𝐴)))
7167, 70eqtr3d 2835 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((𝐴𝑀) / (1 − 𝐴)))
7259, 61, 66divcld 11270 . . . 4 (𝜑 → ((1 − (𝐴𝑀)) / (1 − 𝐴)) ∈ ℂ)
731, 3, 14, 9, 32isumcl 14953 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) ∈ ℂ)
7472, 73pncan2d 10853 . . 3 (𝜑 → ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
7554, 71, 743eqtr3rd 2842 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) = ((𝐴𝑀) / (1 − 𝐴)))
7634, 75breqtrd 4994 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  wne 2986   class class class wbr 4968  cmpt 5047  dom cdm 5450  cfv 6232  (class class class)co 7023  cc 10388  0cc0 10390  1c1 10391   + caddc 10393   < clt 10528  cmin 10723   / cdiv 11151  0cn0 11751  cuz 12097  ...cfz 12746  seqcseq 13223  cexp 13283  abscabs 14431  cli 14679  Σcsu 14880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-inf 8760  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-fz 12747  df-fzo 12888  df-fl 13016  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-rlim 14684  df-sum 14881
This theorem is referenced by:  geoisum1  15072  geoisum1c  15073  rpnnen2lem3  15406  rpnnen2lem9  15412  abelthlem7  24713  log2tlbnd  25209  geomcau  34587  stirlinglem10  41932
  Copyright terms: Public domain W3C validator