MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim2 Structured version   Visualization version   GIF version

Theorem geolim2 15844
Description: The partial sums in the geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1)... converge to ((𝐴𝑀) / (1 − 𝐴)). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
geolim.1 (𝜑𝐴 ∈ ℂ)
geolim.2 (𝜑 → (abs‘𝐴) < 1)
geolim2.3 (𝜑𝑀 ∈ ℕ0)
geolim2.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
Assertion
Ref Expression
geolim2 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘

Proof of Theorem geolim2
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 geolim2.3 . . . 4 (𝜑𝑀 ∈ ℕ0)
32nn0zd 12562 . . 3 (𝜑𝑀 ∈ ℤ)
4 geolim2.4 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
5 geolim.1 . . . . 5 (𝜑𝐴 ∈ ℂ)
65adantr 480 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
7 eluznn0 12883 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
82, 7sylan 580 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
96, 8expcld 14118 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴𝑘) ∈ ℂ)
10 oveq2 7398 . . . . . . . 8 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
11 eqid 2730 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
12 ovex 7423 . . . . . . . 8 (𝐴𝑘) ∈ V
1310, 11, 12fvmpt 6971 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
148, 13syl 17 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
1514, 4eqtr4d 2768 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐹𝑘))
163, 15seqfeq 13999 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) = seq𝑀( + , 𝐹))
17 geolim.2 . . . . . . 7 (𝜑 → (abs‘𝐴) < 1)
18 oveq2 7398 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
19 ovex 7423 . . . . . . . . 9 (𝐴𝑗) ∈ V
2018, 11, 19fvmpt 6971 . . . . . . . 8 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
2120adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
225, 17, 21geolim 15843 . . . . . 6 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
23 seqex 13975 . . . . . . 7 seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V
24 ovex 7423 . . . . . . 7 (1 / (1 − 𝐴)) ∈ V
2523, 24breldm 5875 . . . . . 6 (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
2622, 25syl 17 . . . . 5 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
27 nn0uz 12842 . . . . . 6 0 = (ℤ‘0)
28 expcl 14051 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
295, 28sylan 580 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
3021, 29eqeltrd 2829 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) ∈ ℂ)
3127, 2, 30iserex 15630 . . . . 5 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ))
3226, 31mpbid 232 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
3316, 32eqeltrrd 2830 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
341, 3, 4, 9, 33isumclim2 15731 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
3513adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
36 expcl 14051 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
375, 36sylan 580 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3827, 1, 2, 35, 37, 26isumsplit 15813 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
39 0zd 12548 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
4027, 39, 35, 37, 22isumclim 15730 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
4138, 40eqtr3d 2767 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (1 / (1 − 𝐴)))
42 1re 11181 . . . . . . . . . . 11 1 ∈ ℝ
4342ltnri 11290 . . . . . . . . . 10 ¬ 1 < 1
44 fveq2 6861 . . . . . . . . . . . 12 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
45 abs1 15270 . . . . . . . . . . . 12 (abs‘1) = 1
4644, 45eqtrdi 2781 . . . . . . . . . . 11 (𝐴 = 1 → (abs‘𝐴) = 1)
4746breq1d 5120 . . . . . . . . . 10 (𝐴 = 1 → ((abs‘𝐴) < 1 ↔ 1 < 1))
4843, 47mtbiri 327 . . . . . . . . 9 (𝐴 = 1 → ¬ (abs‘𝐴) < 1)
4948necon2ai 2955 . . . . . . . 8 ((abs‘𝐴) < 1 → 𝐴 ≠ 1)
5017, 49syl 17 . . . . . . 7 (𝜑𝐴 ≠ 1)
515, 50, 2geoser 15840 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) = ((1 − (𝐴𝑀)) / (1 − 𝐴)))
5251oveq1d 7405 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
5341, 52eqtr3d 2767 . . . 4 (𝜑 → (1 / (1 − 𝐴)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
5453oveq1d 7405 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
55 1cnd 11176 . . . . 5 (𝜑 → 1 ∈ ℂ)
56 ax-1cn 11133 . . . . . 6 1 ∈ ℂ
575, 2expcld 14118 . . . . . 6 (𝜑 → (𝐴𝑀) ∈ ℂ)
58 subcl 11427 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (𝐴𝑀)) ∈ ℂ)
5956, 57, 58sylancr 587 . . . . 5 (𝜑 → (1 − (𝐴𝑀)) ∈ ℂ)
60 subcl 11427 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
6156, 5, 60sylancr 587 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℂ)
6250necomd 2981 . . . . . 6 (𝜑 → 1 ≠ 𝐴)
63 subeq0 11455 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
6456, 5, 63sylancr 587 . . . . . . 7 (𝜑 → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
6564necon3bid 2970 . . . . . 6 (𝜑 → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
6662, 65mpbird 257 . . . . 5 (𝜑 → (1 − 𝐴) ≠ 0)
6755, 59, 61, 66divsubdird 12004 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
68 nncan 11458 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
6956, 57, 68sylancr 587 . . . . 5 (𝜑 → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
7069oveq1d 7405 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((𝐴𝑀) / (1 − 𝐴)))
7167, 70eqtr3d 2767 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((𝐴𝑀) / (1 − 𝐴)))
7259, 61, 66divcld 11965 . . . 4 (𝜑 → ((1 − (𝐴𝑀)) / (1 − 𝐴)) ∈ ℂ)
731, 3, 14, 9, 32isumcl 15734 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) ∈ ℂ)
7472, 73pncan2d 11542 . . 3 (𝜑 → ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
7554, 71, 743eqtr3rd 2774 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) = ((𝐴𝑀) / (1 − 𝐴)))
7634, 75breqtrd 5136 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cmin 11412   / cdiv 11842  0cn0 12449  cuz 12800  ...cfz 13475  seqcseq 13973  cexp 14033  abscabs 15207  cli 15457  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660
This theorem is referenced by:  geoisum1  15852  geoisum1c  15853  rpnnen2lem3  16191  rpnnen2lem9  16197  abelthlem7  26355  log2tlbnd  26862  geomcau  37760  stirlinglem10  46088
  Copyright terms: Public domain W3C validator