Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim2 Structured version   Visualization version   GIF version

Theorem geolim2 15222
 Description: The partial sums in the geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1)... converge to ((𝐴↑𝑀) / (1 − 𝐴)). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
geolim.1 (𝜑𝐴 ∈ ℂ)
geolim.2 (𝜑 → (abs‘𝐴) < 1)
geolim2.3 (𝜑𝑀 ∈ ℕ0)
geolim2.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
Assertion
Ref Expression
geolim2 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘

Proof of Theorem geolim2
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 geolim2.3 . . . 4 (𝜑𝑀 ∈ ℕ0)
32nn0zd 12076 . . 3 (𝜑𝑀 ∈ ℤ)
4 geolim2.4 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
5 geolim.1 . . . . 5 (𝜑𝐴 ∈ ℂ)
65adantr 484 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
7 eluznn0 12308 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
82, 7sylan 583 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
96, 8expcld 13509 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴𝑘) ∈ ℂ)
10 oveq2 7144 . . . . . . . 8 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
11 eqid 2798 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
12 ovex 7169 . . . . . . . 8 (𝐴𝑘) ∈ V
1310, 11, 12fvmpt 6746 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
148, 13syl 17 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
1514, 4eqtr4d 2836 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐹𝑘))
163, 15seqfeq 13394 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) = seq𝑀( + , 𝐹))
17 geolim.2 . . . . . . 7 (𝜑 → (abs‘𝐴) < 1)
18 oveq2 7144 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
19 ovex 7169 . . . . . . . . 9 (𝐴𝑗) ∈ V
2018, 11, 19fvmpt 6746 . . . . . . . 8 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
2120adantl 485 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
225, 17, 21geolim 15221 . . . . . 6 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
23 seqex 13369 . . . . . . 7 seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V
24 ovex 7169 . . . . . . 7 (1 / (1 − 𝐴)) ∈ V
2523, 24breldm 5742 . . . . . 6 (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
2622, 25syl 17 . . . . 5 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
27 nn0uz 12271 . . . . . 6 0 = (ℤ‘0)
28 expcl 13446 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
295, 28sylan 583 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
3021, 29eqeltrd 2890 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) ∈ ℂ)
3127, 2, 30iserex 15008 . . . . 5 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ))
3226, 31mpbid 235 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
3316, 32eqeltrrd 2891 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
341, 3, 4, 9, 33isumclim2 15108 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
3513adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
36 expcl 13446 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
375, 36sylan 583 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3827, 1, 2, 35, 37, 26isumsplit 15190 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
39 0zd 11984 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
4027, 39, 35, 37, 22isumclim 15107 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
4138, 40eqtr3d 2835 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (1 / (1 − 𝐴)))
42 1re 10633 . . . . . . . . . . 11 1 ∈ ℝ
4342ltnri 10741 . . . . . . . . . 10 ¬ 1 < 1
44 fveq2 6646 . . . . . . . . . . . 12 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
45 abs1 14652 . . . . . . . . . . . 12 (abs‘1) = 1
4644, 45eqtrdi 2849 . . . . . . . . . . 11 (𝐴 = 1 → (abs‘𝐴) = 1)
4746breq1d 5041 . . . . . . . . . 10 (𝐴 = 1 → ((abs‘𝐴) < 1 ↔ 1 < 1))
4843, 47mtbiri 330 . . . . . . . . 9 (𝐴 = 1 → ¬ (abs‘𝐴) < 1)
4948necon2ai 3016 . . . . . . . 8 ((abs‘𝐴) < 1 → 𝐴 ≠ 1)
5017, 49syl 17 . . . . . . 7 (𝜑𝐴 ≠ 1)
515, 50, 2geoser 15217 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) = ((1 − (𝐴𝑀)) / (1 − 𝐴)))
5251oveq1d 7151 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
5341, 52eqtr3d 2835 . . . 4 (𝜑 → (1 / (1 − 𝐴)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
5453oveq1d 7151 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
55 1cnd 10628 . . . . 5 (𝜑 → 1 ∈ ℂ)
56 ax-1cn 10587 . . . . . 6 1 ∈ ℂ
575, 2expcld 13509 . . . . . 6 (𝜑 → (𝐴𝑀) ∈ ℂ)
58 subcl 10877 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (𝐴𝑀)) ∈ ℂ)
5956, 57, 58sylancr 590 . . . . 5 (𝜑 → (1 − (𝐴𝑀)) ∈ ℂ)
60 subcl 10877 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
6156, 5, 60sylancr 590 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℂ)
6250necomd 3042 . . . . . 6 (𝜑 → 1 ≠ 𝐴)
63 subeq0 10904 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
6456, 5, 63sylancr 590 . . . . . . 7 (𝜑 → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
6564necon3bid 3031 . . . . . 6 (𝜑 → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
6662, 65mpbird 260 . . . . 5 (𝜑 → (1 − 𝐴) ≠ 0)
6755, 59, 61, 66divsubdird 11447 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
68 nncan 10907 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
6956, 57, 68sylancr 590 . . . . 5 (𝜑 → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
7069oveq1d 7151 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((𝐴𝑀) / (1 − 𝐴)))
7167, 70eqtr3d 2835 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((𝐴𝑀) / (1 − 𝐴)))
7259, 61, 66divcld 11408 . . . 4 (𝜑 → ((1 − (𝐴𝑀)) / (1 − 𝐴)) ∈ ℂ)
731, 3, 14, 9, 32isumcl 15111 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) ∈ ℂ)
7472, 73pncan2d 10991 . . 3 (𝜑 → ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
7554, 71, 743eqtr3rd 2842 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) = ((𝐴𝑀) / (1 − 𝐴)))
7634, 75breqtrd 5057 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   class class class wbr 5031   ↦ cmpt 5111  dom cdm 5520  ‘cfv 6325  (class class class)co 7136  ℂcc 10527  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667   − cmin 10862   / cdiv 11289  ℕ0cn0 11888  ℤ≥cuz 12234  ...cfz 12888  seqcseq 13367  ↑cexp 13428  abscabs 14588   ⇝ cli 14836  Σcsu 15037 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-pm 8395  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-inf 8894  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-fz 12889  df-fzo 13032  df-fl 13160  df-seq 13368  df-exp 13429  df-hash 13690  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-sum 15038 This theorem is referenced by:  geoisum1  15230  geoisum1c  15231  rpnnen2lem3  15564  rpnnen2lem9  15570  abelthlem7  25043  log2tlbnd  25541  geomcau  35216  stirlinglem10  42768
 Copyright terms: Public domain W3C validator