MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim Structured version   Visualization version   GIF version

Theorem geolim 15318
Description: The partial sums in the infinite series 1 + 𝐴↑1 + 𝐴↑2... converge to (1 / (1 − 𝐴)). (Contributed by NM, 15-May-2006.)
Hypotheses
Ref Expression
geolim.1 (𝜑𝐴 ∈ ℂ)
geolim.2 (𝜑 → (abs‘𝐴) < 1)
geolim.3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐴𝑘))
Assertion
Ref Expression
geolim (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem geolim
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12362 . . 3 0 = (ℤ‘0)
2 0zd 12074 . . 3 (𝜑 → 0 ∈ ℤ)
3 geolim.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4 geolim.2 . . . . . 6 (𝜑 → (abs‘𝐴) < 1)
53, 4expcnv 15312 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
6 ax-1cn 10673 . . . . . . 7 1 ∈ ℂ
7 subcl 10963 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
86, 3, 7sylancr 590 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℂ)
9 1re 10719 . . . . . . . . . . . 12 1 ∈ ℝ
109ltnri 10827 . . . . . . . . . . 11 ¬ 1 < 1
11 fveq2 6674 . . . . . . . . . . . . 13 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
12 abs1 14747 . . . . . . . . . . . . 13 (abs‘1) = 1
1311, 12eqtrdi 2789 . . . . . . . . . . . 12 (𝐴 = 1 → (abs‘𝐴) = 1)
1413breq1d 5040 . . . . . . . . . . 11 (𝐴 = 1 → ((abs‘𝐴) < 1 ↔ 1 < 1))
1510, 14mtbiri 330 . . . . . . . . . 10 (𝐴 = 1 → ¬ (abs‘𝐴) < 1)
1615necon2ai 2963 . . . . . . . . 9 ((abs‘𝐴) < 1 → 𝐴 ≠ 1)
174, 16syl 17 . . . . . . . 8 (𝜑𝐴 ≠ 1)
1817necomd 2989 . . . . . . 7 (𝜑 → 1 ≠ 𝐴)
19 subeq0 10990 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
206, 3, 19sylancr 590 . . . . . . . 8 (𝜑 → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
2120necon3bid 2978 . . . . . . 7 (𝜑 → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
2218, 21mpbird 260 . . . . . 6 (𝜑 → (1 − 𝐴) ≠ 0)
233, 8, 22divcld 11494 . . . . 5 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℂ)
24 nn0ex 11982 . . . . . . 7 0 ∈ V
2524mptex 6996 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ∈ V
2625a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ∈ V)
27 oveq2 7178 . . . . . . . 8 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
28 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
29 ovex 7203 . . . . . . . 8 (𝐴𝑗) ∈ V
3027, 28, 29fvmpt 6775 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
3130adantl 485 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
32 expcl 13539 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
333, 32sylan 583 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
3431, 33eqeltrd 2833 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) ∈ ℂ)
35 expp1 13528 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = ((𝐴𝑗) · 𝐴))
363, 35sylan 583 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = ((𝐴𝑗) · 𝐴))
373adantr 484 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
3833, 37mulcomd 10740 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((𝐴𝑗) · 𝐴) = (𝐴 · (𝐴𝑗)))
3936, 38eqtrd 2773 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = (𝐴 · (𝐴𝑗)))
4039oveq1d 7185 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) = ((𝐴 · (𝐴𝑗)) / (1 − 𝐴)))
418adantr 484 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (1 − 𝐴) ∈ ℂ)
4222adantr 484 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (1 − 𝐴) ≠ 0)
4337, 33, 41, 42div23d 11531 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝐴 · (𝐴𝑗)) / (1 − 𝐴)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
4440, 43eqtrd 2773 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
45 oveq1 7177 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1))
4645oveq2d 7186 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐴↑(𝑛 + 1)) = (𝐴↑(𝑗 + 1)))
4746oveq1d 7185 . . . . . . . 8 (𝑛 = 𝑗 → ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
48 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))
49 ovex 7203 . . . . . . . 8 ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) ∈ V
5047, 48, 49fvmpt 6775 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
5150adantl 485 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
5231oveq2d 7186 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐴 / (1 − 𝐴)) · ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
5344, 51, 523eqtr4d 2783 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴 / (1 − 𝐴)) · ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗)))
541, 2, 5, 23, 26, 34, 53climmulc2 15084 . . . 4 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ⇝ ((𝐴 / (1 − 𝐴)) · 0))
5523mul01d 10917 . . . 4 (𝜑 → ((𝐴 / (1 − 𝐴)) · 0) = 0)
5654, 55breqtrd 5056 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ⇝ 0)
578, 22reccld 11487 . . 3 (𝜑 → (1 / (1 − 𝐴)) ∈ ℂ)
58 seqex 13462 . . . 4 seq0( + , 𝐹) ∈ V
5958a1i 11 . . 3 (𝜑 → seq0( + , 𝐹) ∈ V)
60 peano2nn0 12016 . . . . . 6 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
61 expcl 13539 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ ℕ0) → (𝐴↑(𝑗 + 1)) ∈ ℂ)
623, 60, 61syl2an 599 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) ∈ ℂ)
6362, 41, 42divcld 11494 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) ∈ ℂ)
6451, 63eqeltrd 2833 . . 3 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) ∈ ℂ)
65 nn0cn 11986 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
6665adantl 485 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℂ)
67 pncan 10970 . . . . . . 7 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
6866, 6, 67sylancl 589 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑗 + 1) − 1) = 𝑗)
6968oveq2d 7186 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (0...((𝑗 + 1) − 1)) = (0...𝑗))
7069sumeq1d 15151 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = Σ𝑘 ∈ (0...𝑗)(𝐴𝑘))
716a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℂ)
7271, 62, 41, 42divsubdird 11533 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 − (𝐴↑(𝑗 + 1))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((𝐴↑(𝑗 + 1)) / (1 − 𝐴))))
7317adantr 484 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ≠ 1)
7460adantl 485 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ0)
7537, 73, 74geoser 15315 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = ((1 − (𝐴↑(𝑗 + 1))) / (1 − 𝐴)))
7651oveq2d 7186 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)) = ((1 / (1 − 𝐴)) − ((𝐴↑(𝑗 + 1)) / (1 − 𝐴))))
7772, 75, 763eqtr4d 2783 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)))
78 simpll 767 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝜑)
79 elfznn0 13091 . . . . . . 7 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
8079adantl 485 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0)
81 geolim.3 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐴𝑘))
8278, 80, 81syl2anc 587 . . . . 5 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → (𝐹𝑘) = (𝐴𝑘))
83 simpr 488 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
8483, 1eleqtrdi 2843 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
8578, 3syl 17 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ)
8685, 80expcld 13602 . . . . 5 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → (𝐴𝑘) ∈ ℂ)
8782, 84, 86fsumser 15180 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)(𝐴𝑘) = (seq0( + , 𝐹)‘𝑗))
8870, 77, 873eqtr3rd 2782 . . 3 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐹)‘𝑗) = ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)))
891, 2, 56, 57, 59, 64, 88climsubc2 15086 . 2 (𝜑 → seq0( + , 𝐹) ⇝ ((1 / (1 − 𝐴)) − 0))
9057subid1d 11064 . 2 (𝜑 → ((1 / (1 − 𝐴)) − 0) = (1 / (1 − 𝐴)))
9189, 90breqtrd 5056 1 (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2934  Vcvv 3398   class class class wbr 5030  cmpt 5110  cfv 6339  (class class class)co 7170  cc 10613  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620   < clt 10753  cmin 10948   / cdiv 11375  0cn0 11976  cuz 12324  ...cfz 12981  seqcseq 13460  cexp 13521  abscabs 14683  cli 14931  Σcsu 15135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-fz 12982  df-fzo 13125  df-fl 13253  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-rlim 14936  df-sum 15136
This theorem is referenced by:  geolim2  15319  georeclim  15320  geomulcvg  15324  geoisum  15325  cvgrat  15331  eflegeo  15566  geolim3  25087  abelthlem5  25182  logtayllem  25402  zetacvg  25752  knoppcnlem6  34316
  Copyright terms: Public domain W3C validator