MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim Structured version   Visualization version   GIF version

Theorem geolim 15902
Description: The partial sums in the infinite series 1 + 𝐴↑1 + 𝐴↑2... converge to (1 / (1 − 𝐴)). (Contributed by NM, 15-May-2006.)
Hypotheses
Ref Expression
geolim.1 (𝜑𝐴 ∈ ℂ)
geolim.2 (𝜑 → (abs‘𝐴) < 1)
geolim.3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐴𝑘))
Assertion
Ref Expression
geolim (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem geolim
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12917 . . 3 0 = (ℤ‘0)
2 0zd 12622 . . 3 (𝜑 → 0 ∈ ℤ)
3 geolim.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4 geolim.2 . . . . . 6 (𝜑 → (abs‘𝐴) < 1)
53, 4expcnv 15896 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
6 ax-1cn 11210 . . . . . . 7 1 ∈ ℂ
7 subcl 11504 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
86, 3, 7sylancr 587 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℂ)
9 1re 11258 . . . . . . . . . . . 12 1 ∈ ℝ
109ltnri 11367 . . . . . . . . . . 11 ¬ 1 < 1
11 fveq2 6906 . . . . . . . . . . . . 13 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
12 abs1 15332 . . . . . . . . . . . . 13 (abs‘1) = 1
1311, 12eqtrdi 2790 . . . . . . . . . . . 12 (𝐴 = 1 → (abs‘𝐴) = 1)
1413breq1d 5157 . . . . . . . . . . 11 (𝐴 = 1 → ((abs‘𝐴) < 1 ↔ 1 < 1))
1510, 14mtbiri 327 . . . . . . . . . 10 (𝐴 = 1 → ¬ (abs‘𝐴) < 1)
1615necon2ai 2967 . . . . . . . . 9 ((abs‘𝐴) < 1 → 𝐴 ≠ 1)
174, 16syl 17 . . . . . . . 8 (𝜑𝐴 ≠ 1)
1817necomd 2993 . . . . . . 7 (𝜑 → 1 ≠ 𝐴)
19 subeq0 11532 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
206, 3, 19sylancr 587 . . . . . . . 8 (𝜑 → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
2120necon3bid 2982 . . . . . . 7 (𝜑 → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
2218, 21mpbird 257 . . . . . 6 (𝜑 → (1 − 𝐴) ≠ 0)
233, 8, 22divcld 12040 . . . . 5 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℂ)
24 nn0ex 12529 . . . . . . 7 0 ∈ V
2524mptex 7242 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ∈ V
2625a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ∈ V)
27 oveq2 7438 . . . . . . . 8 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
28 eqid 2734 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
29 ovex 7463 . . . . . . . 8 (𝐴𝑗) ∈ V
3027, 28, 29fvmpt 7015 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
3130adantl 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
32 expcl 14116 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
333, 32sylan 580 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
3431, 33eqeltrd 2838 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) ∈ ℂ)
35 expp1 14105 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = ((𝐴𝑗) · 𝐴))
363, 35sylan 580 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = ((𝐴𝑗) · 𝐴))
373adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
3833, 37mulcomd 11279 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((𝐴𝑗) · 𝐴) = (𝐴 · (𝐴𝑗)))
3936, 38eqtrd 2774 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = (𝐴 · (𝐴𝑗)))
4039oveq1d 7445 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) = ((𝐴 · (𝐴𝑗)) / (1 − 𝐴)))
418adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (1 − 𝐴) ∈ ℂ)
4222adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (1 − 𝐴) ≠ 0)
4337, 33, 41, 42div23d 12077 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝐴 · (𝐴𝑗)) / (1 − 𝐴)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
4440, 43eqtrd 2774 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
45 oveq1 7437 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1))
4645oveq2d 7446 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐴↑(𝑛 + 1)) = (𝐴↑(𝑗 + 1)))
4746oveq1d 7445 . . . . . . . 8 (𝑛 = 𝑗 → ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
48 eqid 2734 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))
49 ovex 7463 . . . . . . . 8 ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) ∈ V
5047, 48, 49fvmpt 7015 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
5150adantl 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
5231oveq2d 7446 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐴 / (1 − 𝐴)) · ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
5344, 51, 523eqtr4d 2784 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴 / (1 − 𝐴)) · ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗)))
541, 2, 5, 23, 26, 34, 53climmulc2 15669 . . . 4 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ⇝ ((𝐴 / (1 − 𝐴)) · 0))
5523mul01d 11457 . . . 4 (𝜑 → ((𝐴 / (1 − 𝐴)) · 0) = 0)
5654, 55breqtrd 5173 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ⇝ 0)
578, 22reccld 12033 . . 3 (𝜑 → (1 / (1 − 𝐴)) ∈ ℂ)
58 seqex 14040 . . . 4 seq0( + , 𝐹) ∈ V
5958a1i 11 . . 3 (𝜑 → seq0( + , 𝐹) ∈ V)
60 peano2nn0 12563 . . . . . 6 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
61 expcl 14116 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ ℕ0) → (𝐴↑(𝑗 + 1)) ∈ ℂ)
623, 60, 61syl2an 596 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) ∈ ℂ)
6362, 41, 42divcld 12040 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) ∈ ℂ)
6451, 63eqeltrd 2838 . . 3 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) ∈ ℂ)
65 nn0cn 12533 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
6665adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℂ)
67 pncan 11511 . . . . . . 7 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
6866, 6, 67sylancl 586 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑗 + 1) − 1) = 𝑗)
6968oveq2d 7446 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (0...((𝑗 + 1) − 1)) = (0...𝑗))
7069sumeq1d 15732 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = Σ𝑘 ∈ (0...𝑗)(𝐴𝑘))
716a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℂ)
7271, 62, 41, 42divsubdird 12079 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 − (𝐴↑(𝑗 + 1))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((𝐴↑(𝑗 + 1)) / (1 − 𝐴))))
7317adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ≠ 1)
7460adantl 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ0)
7537, 73, 74geoser 15899 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = ((1 − (𝐴↑(𝑗 + 1))) / (1 − 𝐴)))
7651oveq2d 7446 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)) = ((1 / (1 − 𝐴)) − ((𝐴↑(𝑗 + 1)) / (1 − 𝐴))))
7772, 75, 763eqtr4d 2784 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)))
78 simpll 767 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝜑)
79 elfznn0 13656 . . . . . . 7 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
8079adantl 481 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0)
81 geolim.3 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐴𝑘))
8278, 80, 81syl2anc 584 . . . . 5 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → (𝐹𝑘) = (𝐴𝑘))
83 simpr 484 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
8483, 1eleqtrdi 2848 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
8578, 3syl 17 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ)
8685, 80expcld 14182 . . . . 5 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → (𝐴𝑘) ∈ ℂ)
8782, 84, 86fsumser 15762 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)(𝐴𝑘) = (seq0( + , 𝐹)‘𝑗))
8870, 77, 873eqtr3rd 2783 . . 3 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐹)‘𝑗) = ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)))
891, 2, 56, 57, 59, 64, 88climsubc2 15671 . 2 (𝜑 → seq0( + , 𝐹) ⇝ ((1 / (1 − 𝐴)) − 0))
9057subid1d 11606 . 2 (𝜑 → ((1 / (1 − 𝐴)) − 0) = (1 / (1 − 𝐴)))
9189, 90breqtrd 5173 1 (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  Vcvv 3477   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cmin 11489   / cdiv 11917  0cn0 12523  cuz 12875  ...cfz 13543  seqcseq 14038  cexp 14098  abscabs 15269  cli 15516  Σcsu 15718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719
This theorem is referenced by:  geolim2  15903  georeclim  15904  geomulcvg  15908  geoisum  15909  cvgrat  15915  eflegeo  16153  geolim3  26395  abelthlem5  26493  logtayllem  26715  zetacvg  27072  knoppcnlem6  36480
  Copyright terms: Public domain W3C validator