MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim Structured version   Visualization version   GIF version

Theorem geolim 15843
Description: The partial sums in the infinite series 1 + 𝐴↑1 + 𝐴↑2... converge to (1 / (1 − 𝐴)). (Contributed by NM, 15-May-2006.)
Hypotheses
Ref Expression
geolim.1 (𝜑𝐴 ∈ ℂ)
geolim.2 (𝜑 → (abs‘𝐴) < 1)
geolim.3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐴𝑘))
Assertion
Ref Expression
geolim (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem geolim
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12842 . . 3 0 = (ℤ‘0)
2 0zd 12548 . . 3 (𝜑 → 0 ∈ ℤ)
3 geolim.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4 geolim.2 . . . . . 6 (𝜑 → (abs‘𝐴) < 1)
53, 4expcnv 15837 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
6 ax-1cn 11133 . . . . . . 7 1 ∈ ℂ
7 subcl 11427 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
86, 3, 7sylancr 587 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℂ)
9 1re 11181 . . . . . . . . . . . 12 1 ∈ ℝ
109ltnri 11290 . . . . . . . . . . 11 ¬ 1 < 1
11 fveq2 6861 . . . . . . . . . . . . 13 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
12 abs1 15270 . . . . . . . . . . . . 13 (abs‘1) = 1
1311, 12eqtrdi 2781 . . . . . . . . . . . 12 (𝐴 = 1 → (abs‘𝐴) = 1)
1413breq1d 5120 . . . . . . . . . . 11 (𝐴 = 1 → ((abs‘𝐴) < 1 ↔ 1 < 1))
1510, 14mtbiri 327 . . . . . . . . . 10 (𝐴 = 1 → ¬ (abs‘𝐴) < 1)
1615necon2ai 2955 . . . . . . . . 9 ((abs‘𝐴) < 1 → 𝐴 ≠ 1)
174, 16syl 17 . . . . . . . 8 (𝜑𝐴 ≠ 1)
1817necomd 2981 . . . . . . 7 (𝜑 → 1 ≠ 𝐴)
19 subeq0 11455 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
206, 3, 19sylancr 587 . . . . . . . 8 (𝜑 → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
2120necon3bid 2970 . . . . . . 7 (𝜑 → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
2218, 21mpbird 257 . . . . . 6 (𝜑 → (1 − 𝐴) ≠ 0)
233, 8, 22divcld 11965 . . . . 5 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℂ)
24 nn0ex 12455 . . . . . . 7 0 ∈ V
2524mptex 7200 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ∈ V
2625a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ∈ V)
27 oveq2 7398 . . . . . . . 8 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
28 eqid 2730 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
29 ovex 7423 . . . . . . . 8 (𝐴𝑗) ∈ V
3027, 28, 29fvmpt 6971 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
3130adantl 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
32 expcl 14051 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
333, 32sylan 580 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
3431, 33eqeltrd 2829 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) ∈ ℂ)
35 expp1 14040 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = ((𝐴𝑗) · 𝐴))
363, 35sylan 580 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = ((𝐴𝑗) · 𝐴))
373adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
3833, 37mulcomd 11202 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((𝐴𝑗) · 𝐴) = (𝐴 · (𝐴𝑗)))
3936, 38eqtrd 2765 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) = (𝐴 · (𝐴𝑗)))
4039oveq1d 7405 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) = ((𝐴 · (𝐴𝑗)) / (1 − 𝐴)))
418adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (1 − 𝐴) ∈ ℂ)
4222adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (1 − 𝐴) ≠ 0)
4337, 33, 41, 42div23d 12002 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝐴 · (𝐴𝑗)) / (1 − 𝐴)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
4440, 43eqtrd 2765 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
45 oveq1 7397 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1))
4645oveq2d 7406 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐴↑(𝑛 + 1)) = (𝐴↑(𝑗 + 1)))
4746oveq1d 7405 . . . . . . . 8 (𝑛 = 𝑗 → ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
48 eqid 2730 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))
49 ovex 7423 . . . . . . . 8 ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) ∈ V
5047, 48, 49fvmpt 6971 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
5150adantl 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)))
5231oveq2d 7406 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐴 / (1 − 𝐴)) · ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗)) = ((𝐴 / (1 − 𝐴)) · (𝐴𝑗)))
5344, 51, 523eqtr4d 2775 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) = ((𝐴 / (1 − 𝐴)) · ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗)))
541, 2, 5, 23, 26, 34, 53climmulc2 15610 . . . 4 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ⇝ ((𝐴 / (1 − 𝐴)) · 0))
5523mul01d 11380 . . . 4 (𝜑 → ((𝐴 / (1 − 𝐴)) · 0) = 0)
5654, 55breqtrd 5136 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴))) ⇝ 0)
578, 22reccld 11958 . . 3 (𝜑 → (1 / (1 − 𝐴)) ∈ ℂ)
58 seqex 13975 . . . 4 seq0( + , 𝐹) ∈ V
5958a1i 11 . . 3 (𝜑 → seq0( + , 𝐹) ∈ V)
60 peano2nn0 12489 . . . . . 6 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
61 expcl 14051 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ ℕ0) → (𝐴↑(𝑗 + 1)) ∈ ℂ)
623, 60, 61syl2an 596 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐴↑(𝑗 + 1)) ∈ ℂ)
6362, 41, 42divcld 11965 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐴↑(𝑗 + 1)) / (1 − 𝐴)) ∈ ℂ)
6451, 63eqeltrd 2829 . . 3 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗) ∈ ℂ)
65 nn0cn 12459 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
6665adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℂ)
67 pncan 11434 . . . . . . 7 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
6866, 6, 67sylancl 586 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑗 + 1) − 1) = 𝑗)
6968oveq2d 7406 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (0...((𝑗 + 1) − 1)) = (0...𝑗))
7069sumeq1d 15673 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = Σ𝑘 ∈ (0...𝑗)(𝐴𝑘))
716a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℂ)
7271, 62, 41, 42divsubdird 12004 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 − (𝐴↑(𝑗 + 1))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((𝐴↑(𝑗 + 1)) / (1 − 𝐴))))
7317adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ≠ 1)
7460adantl 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ0)
7537, 73, 74geoser 15840 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = ((1 − (𝐴↑(𝑗 + 1))) / (1 − 𝐴)))
7651oveq2d 7406 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)) = ((1 / (1 − 𝐴)) − ((𝐴↑(𝑗 + 1)) / (1 − 𝐴))))
7772, 75, 763eqtr4d 2775 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝑗 + 1) − 1))(𝐴𝑘) = ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)))
78 simpll 766 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝜑)
79 elfznn0 13588 . . . . . . 7 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
8079adantl 481 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0)
81 geolim.3 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐴𝑘))
8278, 80, 81syl2anc 584 . . . . 5 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → (𝐹𝑘) = (𝐴𝑘))
83 simpr 484 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
8483, 1eleqtrdi 2839 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
8578, 3syl 17 . . . . . 6 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ)
8685, 80expcld 14118 . . . . 5 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → (𝐴𝑘) ∈ ℂ)
8782, 84, 86fsumser 15703 . . . 4 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)(𝐴𝑘) = (seq0( + , 𝐹)‘𝑗))
8870, 77, 873eqtr3rd 2774 . . 3 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐹)‘𝑗) = ((1 / (1 − 𝐴)) − ((𝑛 ∈ ℕ0 ↦ ((𝐴↑(𝑛 + 1)) / (1 − 𝐴)))‘𝑗)))
891, 2, 56, 57, 59, 64, 88climsubc2 15612 . 2 (𝜑 → seq0( + , 𝐹) ⇝ ((1 / (1 − 𝐴)) − 0))
9057subid1d 11529 . 2 (𝜑 → ((1 / (1 − 𝐴)) − 0) = (1 / (1 − 𝐴)))
9189, 90breqtrd 5136 1 (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cmin 11412   / cdiv 11842  0cn0 12449  cuz 12800  ...cfz 13475  seqcseq 13973  cexp 14033  abscabs 15207  cli 15457  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660
This theorem is referenced by:  geolim2  15844  georeclim  15845  geomulcvg  15849  geoisum  15850  cvgrat  15856  eflegeo  16096  geolim3  26254  abelthlem5  26352  logtayllem  26575  zetacvg  26932  knoppcnlem6  36493
  Copyright terms: Public domain W3C validator