MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2ne Structured version   Visualization version   GIF version

Theorem pr2ne 10073
Description: If an unordered pair has two elements, then they are different. (Contributed by FL, 14-Feb-2010.) Avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
pr2ne ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))

Proof of Theorem pr2ne
StepHypRef Expression
1 snnen2o 9300 . . . 4 ¬ {𝐴} ≈ 2o
2 dfsn2 4661 . . . . . 6 {𝐴} = {𝐴, 𝐴}
3 preq2 4759 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
42, 3eqtr2id 2793 . . . . 5 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
54breq1d 5176 . . . 4 (𝐴 = 𝐵 → ({𝐴, 𝐵} ≈ 2o ↔ {𝐴} ≈ 2o))
61, 5mtbiri 327 . . 3 (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o)
76necon2ai 2976 . 2 ({𝐴, 𝐵} ≈ 2o𝐴𝐵)
8 enpr2 10071 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
983expia 1121 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o))
107, 9impbid2 226 1 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  {csn 4648  {cpr 4650   class class class wbr 5166  2oc2o 8516  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1o 8522  df-2o 8523  df-en 9004
This theorem is referenced by:  prdom2  10075  isprm2lem  16728  pmtrrn2  19502  mdetunilem7  22645  trsp2cyc  33116  en2pr  43509  pr2cv  43510  pren2  43515
  Copyright terms: Public domain W3C validator