![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pr2ne | Structured version Visualization version GIF version |
Description: If an unordered pair has two elements, then they are different. (Contributed by FL, 14-Feb-2010.) Avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 30-Dec-2024.) |
Ref | Expression |
---|---|
pr2ne | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnen2o 9300 | . . . 4 ⊢ ¬ {𝐴} ≈ 2o | |
2 | dfsn2 4661 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
3 | preq2 4759 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
4 | 2, 3 | eqtr2id 2793 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
5 | 4 | breq1d 5176 | . . . 4 ⊢ (𝐴 = 𝐵 → ({𝐴, 𝐵} ≈ 2o ↔ {𝐴} ≈ 2o)) |
6 | 1, 5 | mtbiri 327 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o) |
7 | 6 | necon2ai 2976 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ≠ 𝐵) |
8 | enpr2 10071 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | |
9 | 8 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o)) |
10 | 7, 9 | impbid2 226 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {csn 4648 {cpr 4650 class class class wbr 5166 2oc2o 8516 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1o 8522 df-2o 8523 df-en 9004 |
This theorem is referenced by: prdom2 10075 isprm2lem 16728 pmtrrn2 19502 mdetunilem7 22645 trsp2cyc 33116 en2pr 43509 pr2cv 43510 pren2 43515 |
Copyright terms: Public domain | W3C validator |