MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2ne Structured version   Visualization version   GIF version

Theorem pr2ne 9933
Description: If an unordered pair has two elements, then they are different. (Contributed by FL, 14-Feb-2010.) Avoid ax-pow 5315, ax-un 7691. (Revised by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
pr2ne ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))

Proof of Theorem pr2ne
StepHypRef Expression
1 snnen2o 9161 . . . 4 ¬ {𝐴} ≈ 2o
2 dfsn2 4598 . . . . . 6 {𝐴} = {𝐴, 𝐴}
3 preq2 4694 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
42, 3eqtr2id 2777 . . . . 5 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
54breq1d 5112 . . . 4 (𝐴 = 𝐵 → ({𝐴, 𝐵} ≈ 2o ↔ {𝐴} ≈ 2o))
61, 5mtbiri 327 . . 3 (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o)
76necon2ai 2954 . 2 ({𝐴, 𝐵} ≈ 2o𝐴𝐵)
8 enpr2 9931 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
983expia 1121 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o))
107, 9impbid2 226 1 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {csn 4585  {cpr 4587   class class class wbr 5102  2oc2o 8405  cen 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1o 8411  df-2o 8412  df-en 8896
This theorem is referenced by:  prdom2  9935  isprm2lem  16627  pmtrrn2  19374  mdetunilem7  22538  trsp2cyc  33095  en2pr  43529  pr2cv  43530  pren2  43535
  Copyright terms: Public domain W3C validator