| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pr2ne | Structured version Visualization version GIF version | ||
| Description: If an unordered pair has two elements, then they are different. (Contributed by FL, 14-Feb-2010.) Avoid ax-pow 5304, ax-un 7671. (Revised by BTernaryTau, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| pr2ne | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnen2o 9134 | . . . 4 ⊢ ¬ {𝐴} ≈ 2o | |
| 2 | dfsn2 4590 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 3 | preq2 4686 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
| 4 | 2, 3 | eqtr2id 2777 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
| 5 | 4 | breq1d 5102 | . . . 4 ⊢ (𝐴 = 𝐵 → ({𝐴, 𝐵} ≈ 2o ↔ {𝐴} ≈ 2o)) |
| 6 | 1, 5 | mtbiri 327 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o) |
| 7 | 6 | necon2ai 2954 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ≠ 𝐵) |
| 8 | enpr2 9898 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | |
| 9 | 8 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o)) |
| 10 | 7, 9 | impbid2 226 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {csn 4577 {cpr 4579 class class class wbr 5092 2oc2o 8382 ≈ cen 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-1o 8388 df-2o 8389 df-en 8873 |
| This theorem is referenced by: prdom2 9900 isprm2lem 16592 pmtrrn2 19339 mdetunilem7 22503 trsp2cyc 33066 en2pr 43530 pr2cv 43531 pren2 43536 |
| Copyright terms: Public domain | W3C validator |