MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2ne Structured version   Visualization version   GIF version

Theorem pr2ne 9761
Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
Assertion
Ref Expression
pr2ne ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))

Proof of Theorem pr2ne
StepHypRef Expression
1 preq2 4670 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
21eqcoms 2746 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 enpr1g 8810 . . . . . . . 8 (𝐴𝐶 → {𝐴, 𝐴} ≈ 1o)
4 entr 8792 . . . . . . . . . . . 12 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → {𝐴, 𝐵} ≈ 1o)
5 1sdom2 9021 . . . . . . . . . . . . . . 15 1o ≺ 2o
6 sdomnen 8769 . . . . . . . . . . . . . . 15 (1o ≺ 2o → ¬ 1o ≈ 2o)
75, 6ax-mp 5 . . . . . . . . . . . . . 14 ¬ 1o ≈ 2o
8 ensym 8789 . . . . . . . . . . . . . . 15 ({𝐴, 𝐵} ≈ 1o → 1o ≈ {𝐴, 𝐵})
9 entr 8792 . . . . . . . . . . . . . . . 16 ((1o ≈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ≈ 2o) → 1o ≈ 2o)
109ex 413 . . . . . . . . . . . . . . 15 (1o ≈ {𝐴, 𝐵} → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
118, 10syl 17 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} ≈ 1o → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
127, 11mtoi 198 . . . . . . . . . . . . 13 ({𝐴, 𝐵} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)
1312a1d 25 . . . . . . . . . . . 12 ({𝐴, 𝐵} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
144, 13syl 17 . . . . . . . . . . 11 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
1514ex 413 . . . . . . . . . 10 ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
16 prex 5355 . . . . . . . . . . 11 {𝐴, 𝐵} ∈ V
17 eqeng 8774 . . . . . . . . . . 11 ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}))
1816, 17ax-mp 5 . . . . . . . . . 10 ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴})
1915, 18syl11 33 . . . . . . . . 9 ({𝐴, 𝐴} ≈ 1o → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
2019a1dd 50 . . . . . . . 8 ({𝐴, 𝐴} ≈ 1o → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵𝐷 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))))
213, 20syl 17 . . . . . . 7 (𝐴𝐶 → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵𝐷 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))))
2221com23 86 . . . . . 6 (𝐴𝐶 → (𝐵𝐷 → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))))
2322imp 407 . . . . 5 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
2423pm2.43a 54 . . . 4 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ¬ {𝐴, 𝐵} ≈ 2o))
252, 24syl5 34 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o))
2625necon2ad 2958 . 2 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
27 pr2nelem 9760 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
28273expia 1120 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o))
2926, 28impbid 211 1 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  {cpr 4563   class class class wbr 5074  1oc1o 8290  2oc2o 8291  cen 8730  csdm 8732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by:  prdom2  9762  isprm2lem  16386  pmtrrn2  19068  mdetunilem7  21767  trsp2cyc  31390  en2pr  41154  pr2cv  41155  pren2  41160
  Copyright terms: Public domain W3C validator