![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashnn0n0nn | Structured version Visualization version GIF version |
Description: If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.) |
Ref | Expression |
---|---|
hashnn0n0nn | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4334 | . . . . . . . 8 ⊢ (𝑁 ∈ 𝑉 → 𝑉 ≠ ∅) | |
2 | hashge1 14398 | . . . . . . . 8 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉)) | |
3 | 1, 2 | sylan2 591 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 1 ≤ (♯‘𝑉)) |
4 | simpr 483 | . . . . . . . . 9 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ0) | |
5 | 0lt1 11774 | . . . . . . . . . . . . 13 ⊢ 0 < 1 | |
6 | 0re 11254 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ | |
7 | 1re 11252 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℝ | |
8 | 6, 7 | ltnlei 11373 | . . . . . . . . . . . . 13 ⊢ (0 < 1 ↔ ¬ 1 ≤ 0) |
9 | 5, 8 | mpbi 229 | . . . . . . . . . . . 12 ⊢ ¬ 1 ≤ 0 |
10 | breq2 5147 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑉) = 0 → (1 ≤ (♯‘𝑉) ↔ 1 ≤ 0)) | |
11 | 9, 10 | mtbiri 326 | . . . . . . . . . . 11 ⊢ ((♯‘𝑉) = 0 → ¬ 1 ≤ (♯‘𝑉)) |
12 | 11 | necon2ai 2960 | . . . . . . . . . 10 ⊢ (1 ≤ (♯‘𝑉) → (♯‘𝑉) ≠ 0) |
13 | 12 | adantr 479 | . . . . . . . . 9 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ≠ 0) |
14 | elnnne0 12529 | . . . . . . . . 9 ⊢ ((♯‘𝑉) ∈ ℕ ↔ ((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0)) | |
15 | 4, 13, 14 | sylanbrc 581 | . . . . . . . 8 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ) |
16 | 15 | ex 411 | . . . . . . 7 ⊢ (1 ≤ (♯‘𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ)) |
17 | 3, 16 | syl 17 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ)) |
18 | 17 | impancom 450 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (𝑁 ∈ 𝑉 → (♯‘𝑉) ∈ ℕ)) |
19 | 18 | com12 32 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ)) |
20 | eleq1 2814 | . . . . . 6 ⊢ ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ0 ↔ 𝑌 ∈ ℕ0)) | |
21 | 20 | anbi2d 628 | . . . . 5 ⊢ ((♯‘𝑉) = 𝑌 → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) ↔ (𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0))) |
22 | eleq1 2814 | . . . . 5 ⊢ ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ ↔ 𝑌 ∈ ℕ)) | |
23 | 21, 22 | imbi12d 343 | . . . 4 ⊢ ((♯‘𝑉) = 𝑌 → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ) ↔ ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))) |
24 | 19, 23 | imbitrid 243 | . . 3 ⊢ ((♯‘𝑉) = 𝑌 → (𝑁 ∈ 𝑉 → ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))) |
25 | 24 | imp 405 | . 2 ⊢ (((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉) → ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ)) |
26 | 25 | impcom 406 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∅c0 4322 class class class wbr 5143 ‘cfv 6543 0cc0 11146 1c1 11147 < clt 11286 ≤ cle 11287 ℕcn 12255 ℕ0cn0 12515 ♯chash 14339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-n0 12516 df-z 12602 df-uz 12866 df-fz 13530 df-hash 14340 |
This theorem is referenced by: cusgrsize2inds 29384 |
Copyright terms: Public domain | W3C validator |