| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashnn0n0nn | Structured version Visualization version GIF version | ||
| Description: If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.) |
| Ref | Expression |
|---|---|
| hashnn0n0nn | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4288 | . . . . . . . 8 ⊢ (𝑁 ∈ 𝑉 → 𝑉 ≠ ∅) | |
| 2 | hashge1 14296 | . . . . . . . 8 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉)) | |
| 3 | 1, 2 | sylan2 593 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 1 ≤ (♯‘𝑉)) |
| 4 | simpr 484 | . . . . . . . . 9 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ0) | |
| 5 | 0lt1 11639 | . . . . . . . . . . . . 13 ⊢ 0 < 1 | |
| 6 | 0re 11114 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ | |
| 7 | 1re 11112 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℝ | |
| 8 | 6, 7 | ltnlei 11234 | . . . . . . . . . . . . 13 ⊢ (0 < 1 ↔ ¬ 1 ≤ 0) |
| 9 | 5, 8 | mpbi 230 | . . . . . . . . . . . 12 ⊢ ¬ 1 ≤ 0 |
| 10 | breq2 5093 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑉) = 0 → (1 ≤ (♯‘𝑉) ↔ 1 ≤ 0)) | |
| 11 | 9, 10 | mtbiri 327 | . . . . . . . . . . 11 ⊢ ((♯‘𝑉) = 0 → ¬ 1 ≤ (♯‘𝑉)) |
| 12 | 11 | necon2ai 2957 | . . . . . . . . . 10 ⊢ (1 ≤ (♯‘𝑉) → (♯‘𝑉) ≠ 0) |
| 13 | 12 | adantr 480 | . . . . . . . . 9 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ≠ 0) |
| 14 | elnnne0 12395 | . . . . . . . . 9 ⊢ ((♯‘𝑉) ∈ ℕ ↔ ((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0)) | |
| 15 | 4, 13, 14 | sylanbrc 583 | . . . . . . . 8 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ) |
| 16 | 15 | ex 412 | . . . . . . 7 ⊢ (1 ≤ (♯‘𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ)) |
| 17 | 3, 16 | syl 17 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ)) |
| 18 | 17 | impancom 451 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (𝑁 ∈ 𝑉 → (♯‘𝑉) ∈ ℕ)) |
| 19 | 18 | com12 32 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ)) |
| 20 | eleq1 2819 | . . . . . 6 ⊢ ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ0 ↔ 𝑌 ∈ ℕ0)) | |
| 21 | 20 | anbi2d 630 | . . . . 5 ⊢ ((♯‘𝑉) = 𝑌 → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) ↔ (𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0))) |
| 22 | eleq1 2819 | . . . . 5 ⊢ ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ ↔ 𝑌 ∈ ℕ)) | |
| 23 | 21, 22 | imbi12d 344 | . . . 4 ⊢ ((♯‘𝑉) = 𝑌 → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ) ↔ ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))) |
| 24 | 19, 23 | imbitrid 244 | . . 3 ⊢ ((♯‘𝑉) = 𝑌 → (𝑁 ∈ 𝑉 → ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))) |
| 25 | 24 | imp 406 | . 2 ⊢ (((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉) → ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ)) |
| 26 | 25 | impcom 407 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 class class class wbr 5089 ‘cfv 6481 0cc0 11006 1c1 11007 < clt 11146 ≤ cle 11147 ℕcn 12125 ℕ0cn0 12381 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 |
| This theorem is referenced by: cusgrsize2inds 29432 |
| Copyright terms: Public domain | W3C validator |