MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnn0n0nn Structured version   Visualization version   GIF version

Theorem hashnn0n0nn 13740
Description: If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.)
Assertion
Ref Expression
hashnn0n0nn (((𝑉𝑊𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌𝑁𝑉)) → 𝑌 ∈ ℕ)

Proof of Theorem hashnn0n0nn
StepHypRef Expression
1 ne0i 4297 . . . . . . . 8 (𝑁𝑉𝑉 ≠ ∅)
2 hashge1 13738 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉))
31, 2sylan2 592 . . . . . . 7 ((𝑉𝑊𝑁𝑉) → 1 ≤ (♯‘𝑉))
4 simpr 485 . . . . . . . . 9 ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ0)
5 0lt1 11150 . . . . . . . . . . . . 13 0 < 1
6 0re 10631 . . . . . . . . . . . . . 14 0 ∈ ℝ
7 1re 10629 . . . . . . . . . . . . . 14 1 ∈ ℝ
86, 7ltnlei 10749 . . . . . . . . . . . . 13 (0 < 1 ↔ ¬ 1 ≤ 0)
95, 8mpbi 231 . . . . . . . . . . . 12 ¬ 1 ≤ 0
10 breq2 5061 . . . . . . . . . . . 12 ((♯‘𝑉) = 0 → (1 ≤ (♯‘𝑉) ↔ 1 ≤ 0))
119, 10mtbiri 328 . . . . . . . . . . 11 ((♯‘𝑉) = 0 → ¬ 1 ≤ (♯‘𝑉))
1211necon2ai 3042 . . . . . . . . . 10 (1 ≤ (♯‘𝑉) → (♯‘𝑉) ≠ 0)
1312adantr 481 . . . . . . . . 9 ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ≠ 0)
14 elnnne0 11899 . . . . . . . . 9 ((♯‘𝑉) ∈ ℕ ↔ ((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0))
154, 13, 14sylanbrc 583 . . . . . . . 8 ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ)
1615ex 413 . . . . . . 7 (1 ≤ (♯‘𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ))
173, 16syl 17 . . . . . 6 ((𝑉𝑊𝑁𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ))
1817impancom 452 . . . . 5 ((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (𝑁𝑉 → (♯‘𝑉) ∈ ℕ))
1918com12 32 . . . 4 (𝑁𝑉 → ((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ))
20 eleq1 2897 . . . . . 6 ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ0𝑌 ∈ ℕ0))
2120anbi2d 628 . . . . 5 ((♯‘𝑉) = 𝑌 → ((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) ↔ (𝑉𝑊𝑌 ∈ ℕ0)))
22 eleq1 2897 . . . . 5 ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ ↔ 𝑌 ∈ ℕ))
2321, 22imbi12d 346 . . . 4 ((♯‘𝑉) = 𝑌 → (((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ) ↔ ((𝑉𝑊𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ)))
2419, 23syl5ib 245 . . 3 ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → ((𝑉𝑊𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ)))
2524imp 407 . 2 (((♯‘𝑉) = 𝑌𝑁𝑉) → ((𝑉𝑊𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))
2625impcom 408 1 (((𝑉𝑊𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌𝑁𝑉)) → 𝑌 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  c0 4288   class class class wbr 5057  cfv 6348  0cc0 10525  1c1 10526   < clt 10663  cle 10664  cn 11626  0cn0 11885  chash 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-hash 13679
This theorem is referenced by:  cusgrsize2inds  27162
  Copyright terms: Public domain W3C validator