MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnn0n0nn Structured version   Visualization version   GIF version

Theorem hashnn0n0nn 14363
Description: If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.)
Assertion
Ref Expression
hashnn0n0nn (((𝑉𝑊𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌𝑁𝑉)) → 𝑌 ∈ ℕ)

Proof of Theorem hashnn0n0nn
StepHypRef Expression
1 ne0i 4307 . . . . . . . 8 (𝑁𝑉𝑉 ≠ ∅)
2 hashge1 14361 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉))
31, 2sylan2 593 . . . . . . 7 ((𝑉𝑊𝑁𝑉) → 1 ≤ (♯‘𝑉))
4 simpr 484 . . . . . . . . 9 ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ0)
5 0lt1 11707 . . . . . . . . . . . . 13 0 < 1
6 0re 11183 . . . . . . . . . . . . . 14 0 ∈ ℝ
7 1re 11181 . . . . . . . . . . . . . 14 1 ∈ ℝ
86, 7ltnlei 11302 . . . . . . . . . . . . 13 (0 < 1 ↔ ¬ 1 ≤ 0)
95, 8mpbi 230 . . . . . . . . . . . 12 ¬ 1 ≤ 0
10 breq2 5114 . . . . . . . . . . . 12 ((♯‘𝑉) = 0 → (1 ≤ (♯‘𝑉) ↔ 1 ≤ 0))
119, 10mtbiri 327 . . . . . . . . . . 11 ((♯‘𝑉) = 0 → ¬ 1 ≤ (♯‘𝑉))
1211necon2ai 2955 . . . . . . . . . 10 (1 ≤ (♯‘𝑉) → (♯‘𝑉) ≠ 0)
1312adantr 480 . . . . . . . . 9 ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ≠ 0)
14 elnnne0 12463 . . . . . . . . 9 ((♯‘𝑉) ∈ ℕ ↔ ((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0))
154, 13, 14sylanbrc 583 . . . . . . . 8 ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ)
1615ex 412 . . . . . . 7 (1 ≤ (♯‘𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ))
173, 16syl 17 . . . . . 6 ((𝑉𝑊𝑁𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ))
1817impancom 451 . . . . 5 ((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (𝑁𝑉 → (♯‘𝑉) ∈ ℕ))
1918com12 32 . . . 4 (𝑁𝑉 → ((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ))
20 eleq1 2817 . . . . . 6 ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ0𝑌 ∈ ℕ0))
2120anbi2d 630 . . . . 5 ((♯‘𝑉) = 𝑌 → ((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) ↔ (𝑉𝑊𝑌 ∈ ℕ0)))
22 eleq1 2817 . . . . 5 ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ ↔ 𝑌 ∈ ℕ))
2321, 22imbi12d 344 . . . 4 ((♯‘𝑉) = 𝑌 → (((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ) ↔ ((𝑉𝑊𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ)))
2419, 23imbitrid 244 . . 3 ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → ((𝑉𝑊𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ)))
2524imp 406 . 2 (((♯‘𝑉) = 𝑌𝑁𝑉) → ((𝑉𝑊𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))
2625impcom 407 1 (((𝑉𝑊𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌𝑁𝑉)) → 𝑌 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  c0 4299   class class class wbr 5110  cfv 6514  0cc0 11075  1c1 11076   < clt 11215  cle 11216  cn 12193  0cn0 12449  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  cusgrsize2inds  29388
  Copyright terms: Public domain W3C validator