MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnn0n0nn Structured version   Visualization version   GIF version

Theorem hashnn0n0nn 14298
Description: If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.)
Assertion
Ref Expression
hashnn0n0nn (((𝑉𝑊𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌𝑁𝑉)) → 𝑌 ∈ ℕ)

Proof of Theorem hashnn0n0nn
StepHypRef Expression
1 ne0i 4299 . . . . . . . 8 (𝑁𝑉𝑉 ≠ ∅)
2 hashge1 14296 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉))
31, 2sylan2 594 . . . . . . 7 ((𝑉𝑊𝑁𝑉) → 1 ≤ (♯‘𝑉))
4 simpr 486 . . . . . . . . 9 ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ0)
5 0lt1 11684 . . . . . . . . . . . . 13 0 < 1
6 0re 11164 . . . . . . . . . . . . . 14 0 ∈ ℝ
7 1re 11162 . . . . . . . . . . . . . 14 1 ∈ ℝ
86, 7ltnlei 11283 . . . . . . . . . . . . 13 (0 < 1 ↔ ¬ 1 ≤ 0)
95, 8mpbi 229 . . . . . . . . . . . 12 ¬ 1 ≤ 0
10 breq2 5114 . . . . . . . . . . . 12 ((♯‘𝑉) = 0 → (1 ≤ (♯‘𝑉) ↔ 1 ≤ 0))
119, 10mtbiri 327 . . . . . . . . . . 11 ((♯‘𝑉) = 0 → ¬ 1 ≤ (♯‘𝑉))
1211necon2ai 2974 . . . . . . . . . 10 (1 ≤ (♯‘𝑉) → (♯‘𝑉) ≠ 0)
1312adantr 482 . . . . . . . . 9 ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ≠ 0)
14 elnnne0 12434 . . . . . . . . 9 ((♯‘𝑉) ∈ ℕ ↔ ((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0))
154, 13, 14sylanbrc 584 . . . . . . . 8 ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ)
1615ex 414 . . . . . . 7 (1 ≤ (♯‘𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ))
173, 16syl 17 . . . . . 6 ((𝑉𝑊𝑁𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ))
1817impancom 453 . . . . 5 ((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (𝑁𝑉 → (♯‘𝑉) ∈ ℕ))
1918com12 32 . . . 4 (𝑁𝑉 → ((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ))
20 eleq1 2826 . . . . . 6 ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ0𝑌 ∈ ℕ0))
2120anbi2d 630 . . . . 5 ((♯‘𝑉) = 𝑌 → ((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) ↔ (𝑉𝑊𝑌 ∈ ℕ0)))
22 eleq1 2826 . . . . 5 ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ ↔ 𝑌 ∈ ℕ))
2321, 22imbi12d 345 . . . 4 ((♯‘𝑉) = 𝑌 → (((𝑉𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ) ↔ ((𝑉𝑊𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ)))
2419, 23imbitrid 243 . . 3 ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → ((𝑉𝑊𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ)))
2524imp 408 . 2 (((♯‘𝑉) = 𝑌𝑁𝑉) → ((𝑉𝑊𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))
2625impcom 409 1 (((𝑉𝑊𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌𝑁𝑉)) → 𝑌 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2944  c0 4287   class class class wbr 5110  cfv 6501  0cc0 11058  1c1 11059   < clt 11196  cle 11197  cn 12160  0cn0 12420  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238
This theorem is referenced by:  cusgrsize2inds  28443
  Copyright terms: Public domain W3C validator