| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashnn0n0nn | Structured version Visualization version GIF version | ||
| Description: If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.) |
| Ref | Expression |
|---|---|
| hashnn0n0nn | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4292 | . . . . . . . 8 ⊢ (𝑁 ∈ 𝑉 → 𝑉 ≠ ∅) | |
| 2 | hashge1 14296 | . . . . . . . 8 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉)) | |
| 3 | 1, 2 | sylan2 593 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 1 ≤ (♯‘𝑉)) |
| 4 | simpr 484 | . . . . . . . . 9 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ0) | |
| 5 | 0lt1 11642 | . . . . . . . . . . . . 13 ⊢ 0 < 1 | |
| 6 | 0re 11117 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ | |
| 7 | 1re 11115 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℝ | |
| 8 | 6, 7 | ltnlei 11237 | . . . . . . . . . . . . 13 ⊢ (0 < 1 ↔ ¬ 1 ≤ 0) |
| 9 | 5, 8 | mpbi 230 | . . . . . . . . . . . 12 ⊢ ¬ 1 ≤ 0 |
| 10 | breq2 5096 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑉) = 0 → (1 ≤ (♯‘𝑉) ↔ 1 ≤ 0)) | |
| 11 | 9, 10 | mtbiri 327 | . . . . . . . . . . 11 ⊢ ((♯‘𝑉) = 0 → ¬ 1 ≤ (♯‘𝑉)) |
| 12 | 11 | necon2ai 2954 | . . . . . . . . . 10 ⊢ (1 ≤ (♯‘𝑉) → (♯‘𝑉) ≠ 0) |
| 13 | 12 | adantr 480 | . . . . . . . . 9 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ≠ 0) |
| 14 | elnnne0 12398 | . . . . . . . . 9 ⊢ ((♯‘𝑉) ∈ ℕ ↔ ((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0)) | |
| 15 | 4, 13, 14 | sylanbrc 583 | . . . . . . . 8 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ) |
| 16 | 15 | ex 412 | . . . . . . 7 ⊢ (1 ≤ (♯‘𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ)) |
| 17 | 3, 16 | syl 17 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ)) |
| 18 | 17 | impancom 451 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (𝑁 ∈ 𝑉 → (♯‘𝑉) ∈ ℕ)) |
| 19 | 18 | com12 32 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ)) |
| 20 | eleq1 2816 | . . . . . 6 ⊢ ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ0 ↔ 𝑌 ∈ ℕ0)) | |
| 21 | 20 | anbi2d 630 | . . . . 5 ⊢ ((♯‘𝑉) = 𝑌 → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) ↔ (𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0))) |
| 22 | eleq1 2816 | . . . . 5 ⊢ ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ ↔ 𝑌 ∈ ℕ)) | |
| 23 | 21, 22 | imbi12d 344 | . . . 4 ⊢ ((♯‘𝑉) = 𝑌 → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ) ↔ ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))) |
| 24 | 19, 23 | imbitrid 244 | . . 3 ⊢ ((♯‘𝑉) = 𝑌 → (𝑁 ∈ 𝑉 → ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))) |
| 25 | 24 | imp 406 | . 2 ⊢ (((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉) → ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ)) |
| 26 | 25 | impcom 407 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 class class class wbr 5092 ‘cfv 6482 0cc0 11009 1c1 11010 < clt 11149 ≤ cle 11150 ℕcn 12128 ℕ0cn0 12384 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 |
| This theorem is referenced by: cusgrsize2inds 29399 |
| Copyright terms: Public domain | W3C validator |