Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashnn0n0nn | Structured version Visualization version GIF version |
Description: If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.) |
Ref | Expression |
---|---|
hashnn0n0nn | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4249 | . . . . . . . 8 ⊢ (𝑁 ∈ 𝑉 → 𝑉 ≠ ∅) | |
2 | hashge1 13956 | . . . . . . . 8 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉)) | |
3 | 1, 2 | sylan2 596 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 1 ≤ (♯‘𝑉)) |
4 | simpr 488 | . . . . . . . . 9 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ0) | |
5 | 0lt1 11354 | . . . . . . . . . . . . 13 ⊢ 0 < 1 | |
6 | 0re 10835 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ | |
7 | 1re 10833 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℝ | |
8 | 6, 7 | ltnlei 10953 | . . . . . . . . . . . . 13 ⊢ (0 < 1 ↔ ¬ 1 ≤ 0) |
9 | 5, 8 | mpbi 233 | . . . . . . . . . . . 12 ⊢ ¬ 1 ≤ 0 |
10 | breq2 5057 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑉) = 0 → (1 ≤ (♯‘𝑉) ↔ 1 ≤ 0)) | |
11 | 9, 10 | mtbiri 330 | . . . . . . . . . . 11 ⊢ ((♯‘𝑉) = 0 → ¬ 1 ≤ (♯‘𝑉)) |
12 | 11 | necon2ai 2970 | . . . . . . . . . 10 ⊢ (1 ≤ (♯‘𝑉) → (♯‘𝑉) ≠ 0) |
13 | 12 | adantr 484 | . . . . . . . . 9 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ≠ 0) |
14 | elnnne0 12104 | . . . . . . . . 9 ⊢ ((♯‘𝑉) ∈ ℕ ↔ ((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0)) | |
15 | 4, 13, 14 | sylanbrc 586 | . . . . . . . 8 ⊢ ((1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ) |
16 | 15 | ex 416 | . . . . . . 7 ⊢ (1 ≤ (♯‘𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ)) |
17 | 3, 16 | syl 17 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℕ)) |
18 | 17 | impancom 455 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (𝑁 ∈ 𝑉 → (♯‘𝑉) ∈ ℕ)) |
19 | 18 | com12 32 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ)) |
20 | eleq1 2825 | . . . . . 6 ⊢ ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ0 ↔ 𝑌 ∈ ℕ0)) | |
21 | 20 | anbi2d 632 | . . . . 5 ⊢ ((♯‘𝑉) = 𝑌 → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) ↔ (𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0))) |
22 | eleq1 2825 | . . . . 5 ⊢ ((♯‘𝑉) = 𝑌 → ((♯‘𝑉) ∈ ℕ ↔ 𝑌 ∈ ℕ)) | |
23 | 21, 22 | imbi12d 348 | . . . 4 ⊢ ((♯‘𝑉) = 𝑌 → (((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) ∈ ℕ0) → (♯‘𝑉) ∈ ℕ) ↔ ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))) |
24 | 19, 23 | syl5ib 247 | . . 3 ⊢ ((♯‘𝑉) = 𝑌 → (𝑁 ∈ 𝑉 → ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))) |
25 | 24 | imp 410 | . 2 ⊢ (((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉) → ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ)) |
26 | 25 | impcom 411 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∅c0 4237 class class class wbr 5053 ‘cfv 6380 0cc0 10729 1c1 10730 < clt 10867 ≤ cle 10868 ℕcn 11830 ℕ0cn0 12090 ♯chash 13896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-hash 13897 |
This theorem is referenced by: cusgrsize2inds 27541 |
Copyright terms: Public domain | W3C validator |