![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logdmn0 | Structured version Visualization version GIF version |
Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.) |
Ref | Expression |
---|---|
logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
Ref | Expression |
---|---|
logdmn0 | ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nrp 13044 | . . . 4 ⊢ ¬ 0 ∈ ℝ+ | |
2 | 0re 11248 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | logcn.d | . . . . . . 7 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
4 | 3 | ellogdm 26618 | . . . . . 6 ⊢ (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ (0 ∈ ℝ → 0 ∈ ℝ+))) |
5 | 4 | simprbi 495 | . . . . 5 ⊢ (0 ∈ 𝐷 → (0 ∈ ℝ → 0 ∈ ℝ+)) |
6 | 2, 5 | mpi 20 | . . . 4 ⊢ (0 ∈ 𝐷 → 0 ∈ ℝ+) |
7 | 1, 6 | mto 196 | . . 3 ⊢ ¬ 0 ∈ 𝐷 |
8 | eleq1 2813 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝐷 ↔ 0 ∈ 𝐷)) | |
9 | 7, 8 | mtbiri 326 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ 𝐷) |
10 | 9 | necon2ai 2959 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∖ cdif 3941 (class class class)co 7419 ℂcc 11138 ℝcr 11139 0cc0 11140 -∞cmnf 11278 ℝ+crp 13009 (,]cioc 13360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-addrcl 11201 ax-rnegex 11211 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-rp 13010 df-ioc 13364 |
This theorem is referenced by: logdmss 26621 logcnlem2 26622 logcnlem3 26623 logcnlem4 26624 logcnlem5 26625 logcn 26626 dvloglem 26627 logf1o2 26629 logtayl 26639 logtayl2 26641 dvcncxp1 26722 dvcnsqrt 26723 cxpcn 26724 cxpcnOLD 26725 atansssdm 26910 lgamgulmlem2 27007 |
Copyright terms: Public domain | W3C validator |