Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > logdmn0 | Structured version Visualization version GIF version |
Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.) |
Ref | Expression |
---|---|
logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
Ref | Expression |
---|---|
logdmn0 | ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nrp 12764 | . . . 4 ⊢ ¬ 0 ∈ ℝ+ | |
2 | 0re 10978 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | logcn.d | . . . . . . 7 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
4 | 3 | ellogdm 25792 | . . . . . 6 ⊢ (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ (0 ∈ ℝ → 0 ∈ ℝ+))) |
5 | 4 | simprbi 497 | . . . . 5 ⊢ (0 ∈ 𝐷 → (0 ∈ ℝ → 0 ∈ ℝ+)) |
6 | 2, 5 | mpi 20 | . . . 4 ⊢ (0 ∈ 𝐷 → 0 ∈ ℝ+) |
7 | 1, 6 | mto 196 | . . 3 ⊢ ¬ 0 ∈ 𝐷 |
8 | eleq1 2828 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝐷 ↔ 0 ∈ 𝐷)) | |
9 | 7, 8 | mtbiri 327 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ 𝐷) |
10 | 9 | necon2ai 2975 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∖ cdif 3889 (class class class)co 7271 ℂcc 10870 ℝcr 10871 0cc0 10872 -∞cmnf 11008 ℝ+crp 12729 (,]cioc 13079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-addrcl 10933 ax-rnegex 10943 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-rp 12730 df-ioc 13083 |
This theorem is referenced by: logdmss 25795 logcnlem2 25796 logcnlem3 25797 logcnlem4 25798 logcnlem5 25799 logcn 25800 dvloglem 25801 logf1o2 25803 logtayl 25813 logtayl2 25815 dvcncxp1 25894 dvcnsqrt 25895 cxpcn 25896 atansssdm 26081 lgamgulmlem2 26177 |
Copyright terms: Public domain | W3C validator |