MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmn0 Structured version   Visualization version   GIF version

Theorem logdmn0 26569
Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmn0 (𝐴𝐷𝐴 ≠ 0)

Proof of Theorem logdmn0
StepHypRef Expression
1 0nrp 12919 . . . 4 ¬ 0 ∈ ℝ+
2 0re 11106 . . . . 5 0 ∈ ℝ
3 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
43ellogdm 26568 . . . . . 6 (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ (0 ∈ ℝ → 0 ∈ ℝ+)))
54simprbi 496 . . . . 5 (0 ∈ 𝐷 → (0 ∈ ℝ → 0 ∈ ℝ+))
62, 5mpi 20 . . . 4 (0 ∈ 𝐷 → 0 ∈ ℝ+)
71, 6mto 197 . . 3 ¬ 0 ∈ 𝐷
8 eleq1 2817 . . 3 (𝐴 = 0 → (𝐴𝐷 ↔ 0 ∈ 𝐷))
97, 8mtbiri 327 . 2 (𝐴 = 0 → ¬ 𝐴𝐷)
109necon2ai 2955 1 (𝐴𝐷𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  wne 2926  cdif 3897  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  -∞cmnf 11136  +crp 12882  (,]cioc 13238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-addrcl 11059  ax-rnegex 11069  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-rp 12883  df-ioc 13242
This theorem is referenced by:  logdmss  26571  logcnlem2  26572  logcnlem3  26573  logcnlem4  26574  logcnlem5  26575  logcn  26576  dvloglem  26577  logf1o2  26579  logtayl  26589  logtayl2  26591  dvcncxp1  26672  dvcnsqrt  26673  cxpcn  26674  cxpcnOLD  26675  atansssdm  26863  lgamgulmlem2  26960
  Copyright terms: Public domain W3C validator