| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logdmn0 | Structured version Visualization version GIF version | ||
| Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| Ref | Expression |
|---|---|
| logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| logdmn0 | ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nrp 12919 | . . . 4 ⊢ ¬ 0 ∈ ℝ+ | |
| 2 | 0re 11106 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 3 | logcn.d | . . . . . . 7 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 4 | 3 | ellogdm 26568 | . . . . . 6 ⊢ (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ (0 ∈ ℝ → 0 ∈ ℝ+))) |
| 5 | 4 | simprbi 496 | . . . . 5 ⊢ (0 ∈ 𝐷 → (0 ∈ ℝ → 0 ∈ ℝ+)) |
| 6 | 2, 5 | mpi 20 | . . . 4 ⊢ (0 ∈ 𝐷 → 0 ∈ ℝ+) |
| 7 | 1, 6 | mto 197 | . . 3 ⊢ ¬ 0 ∈ 𝐷 |
| 8 | eleq1 2817 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝐷 ↔ 0 ∈ 𝐷)) | |
| 9 | 7, 8 | mtbiri 327 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ 𝐷) |
| 10 | 9 | necon2ai 2955 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∖ cdif 3897 (class class class)co 7341 ℂcc 10996 ℝcr 10997 0cc0 10998 -∞cmnf 11136 ℝ+crp 12882 (,]cioc 13238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-addrcl 11059 ax-rnegex 11069 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-rp 12883 df-ioc 13242 |
| This theorem is referenced by: logdmss 26571 logcnlem2 26572 logcnlem3 26573 logcnlem4 26574 logcnlem5 26575 logcn 26576 dvloglem 26577 logf1o2 26579 logtayl 26589 logtayl2 26591 dvcncxp1 26672 dvcnsqrt 26673 cxpcn 26674 cxpcnOLD 26675 atansssdm 26863 lgamgulmlem2 26960 |
| Copyright terms: Public domain | W3C validator |