| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logdmn0 | Structured version Visualization version GIF version | ||
| Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| Ref | Expression |
|---|---|
| logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| logdmn0 | ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nrp 12948 | . . . 4 ⊢ ¬ 0 ∈ ℝ+ | |
| 2 | 0re 11136 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 3 | logcn.d | . . . . . . 7 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 4 | 3 | ellogdm 26564 | . . . . . 6 ⊢ (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ (0 ∈ ℝ → 0 ∈ ℝ+))) |
| 5 | 4 | simprbi 496 | . . . . 5 ⊢ (0 ∈ 𝐷 → (0 ∈ ℝ → 0 ∈ ℝ+)) |
| 6 | 2, 5 | mpi 20 | . . . 4 ⊢ (0 ∈ 𝐷 → 0 ∈ ℝ+) |
| 7 | 1, 6 | mto 197 | . . 3 ⊢ ¬ 0 ∈ 𝐷 |
| 8 | eleq1 2816 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝐷 ↔ 0 ∈ 𝐷)) | |
| 9 | 7, 8 | mtbiri 327 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ 𝐷) |
| 10 | 9 | necon2ai 2954 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 -∞cmnf 11166 ℝ+crp 12911 (,]cioc 13267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-rp 12912 df-ioc 13271 |
| This theorem is referenced by: logdmss 26567 logcnlem2 26568 logcnlem3 26569 logcnlem4 26570 logcnlem5 26571 logcn 26572 dvloglem 26573 logf1o2 26575 logtayl 26585 logtayl2 26587 dvcncxp1 26668 dvcnsqrt 26669 cxpcn 26670 cxpcnOLD 26671 atansssdm 26859 lgamgulmlem2 26956 |
| Copyright terms: Public domain | W3C validator |