| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logdmn0 | Structured version Visualization version GIF version | ||
| Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| Ref | Expression |
|---|---|
| logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| logdmn0 | ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nrp 12937 | . . . 4 ⊢ ¬ 0 ∈ ℝ+ | |
| 2 | 0re 11124 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 3 | logcn.d | . . . . . . 7 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 4 | 3 | ellogdm 26585 | . . . . . 6 ⊢ (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ (0 ∈ ℝ → 0 ∈ ℝ+))) |
| 5 | 4 | simprbi 496 | . . . . 5 ⊢ (0 ∈ 𝐷 → (0 ∈ ℝ → 0 ∈ ℝ+)) |
| 6 | 2, 5 | mpi 20 | . . . 4 ⊢ (0 ∈ 𝐷 → 0 ∈ ℝ+) |
| 7 | 1, 6 | mto 197 | . . 3 ⊢ ¬ 0 ∈ 𝐷 |
| 8 | eleq1 2821 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝐷 ↔ 0 ∈ 𝐷)) | |
| 9 | 7, 8 | mtbiri 327 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ 𝐷) |
| 10 | 9 | necon2ai 2959 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∖ cdif 3896 (class class class)co 7355 ℂcc 11014 ℝcr 11015 0cc0 11016 -∞cmnf 11154 ℝ+crp 12900 (,]cioc 13256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-addrcl 11077 ax-rnegex 11087 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-rp 12901 df-ioc 13260 |
| This theorem is referenced by: logdmss 26588 logcnlem2 26589 logcnlem3 26590 logcnlem4 26591 logcnlem5 26592 logcn 26593 dvloglem 26594 logf1o2 26596 logtayl 26606 logtayl2 26608 dvcncxp1 26689 dvcnsqrt 26690 cxpcn 26691 cxpcnOLD 26692 atansssdm 26880 lgamgulmlem2 26977 |
| Copyright terms: Public domain | W3C validator |