MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmn0 Structured version   Visualization version   GIF version

Theorem logdmn0 26619
Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmn0 (𝐴𝐷𝐴 ≠ 0)

Proof of Theorem logdmn0
StepHypRef Expression
1 0nrp 13044 . . . 4 ¬ 0 ∈ ℝ+
2 0re 11248 . . . . 5 0 ∈ ℝ
3 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
43ellogdm 26618 . . . . . 6 (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ (0 ∈ ℝ → 0 ∈ ℝ+)))
54simprbi 495 . . . . 5 (0 ∈ 𝐷 → (0 ∈ ℝ → 0 ∈ ℝ+))
62, 5mpi 20 . . . 4 (0 ∈ 𝐷 → 0 ∈ ℝ+)
71, 6mto 196 . . 3 ¬ 0 ∈ 𝐷
8 eleq1 2813 . . 3 (𝐴 = 0 → (𝐴𝐷 ↔ 0 ∈ 𝐷))
97, 8mtbiri 326 . 2 (𝐴 = 0 → ¬ 𝐴𝐷)
109necon2ai 2959 1 (𝐴𝐷𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wne 2929  cdif 3941  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140  -∞cmnf 11278  +crp 13009  (,]cioc 13360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-addrcl 11201  ax-rnegex 11211  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-rp 13010  df-ioc 13364
This theorem is referenced by:  logdmss  26621  logcnlem2  26622  logcnlem3  26623  logcnlem4  26624  logcnlem5  26625  logcn  26626  dvloglem  26627  logf1o2  26629  logtayl  26639  logtayl2  26641  dvcncxp1  26722  dvcnsqrt  26723  cxpcn  26724  cxpcnOLD  26725  atansssdm  26910  lgamgulmlem2  27007
  Copyright terms: Public domain W3C validator