MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmn0 Structured version   Visualization version   GIF version

Theorem logdmn0 25215
Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmn0 (𝐴𝐷𝐴 ≠ 0)

Proof of Theorem logdmn0
StepHypRef Expression
1 0nrp 12416 . . . 4 ¬ 0 ∈ ℝ+
2 0re 10635 . . . . 5 0 ∈ ℝ
3 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
43ellogdm 25214 . . . . . 6 (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ (0 ∈ ℝ → 0 ∈ ℝ+)))
54simprbi 499 . . . . 5 (0 ∈ 𝐷 → (0 ∈ ℝ → 0 ∈ ℝ+))
62, 5mpi 20 . . . 4 (0 ∈ 𝐷 → 0 ∈ ℝ+)
71, 6mto 199 . . 3 ¬ 0 ∈ 𝐷
8 eleq1 2898 . . 3 (𝐴 = 0 → (𝐴𝐷 ↔ 0 ∈ 𝐷))
97, 8mtbiri 329 . 2 (𝐴 = 0 → ¬ 𝐴𝐷)
109necon2ai 3043 1 (𝐴𝐷𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  wne 3014  cdif 3931  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  -∞cmnf 10665  +crp 12381  (,]cioc 12731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-addrcl 10590  ax-rnegex 10600  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-rp 12382  df-ioc 12735
This theorem is referenced by:  logdmss  25217  logcnlem2  25218  logcnlem3  25219  logcnlem4  25220  logcnlem5  25221  logcn  25222  dvloglem  25223  logf1o2  25225  logtayl  25235  logtayl2  25237  dvcncxp1  25316  dvcnsqrt  25317  cxpcn  25318  atansssdm  25503  lgamgulmlem2  25599
  Copyright terms: Public domain W3C validator