MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmn0 Structured version   Visualization version   GIF version

Theorem logdmn0 26700
Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmn0 (𝐴𝐷𝐴 ≠ 0)

Proof of Theorem logdmn0
StepHypRef Expression
1 0nrp 13092 . . . 4 ¬ 0 ∈ ℝ+
2 0re 11292 . . . . 5 0 ∈ ℝ
3 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
43ellogdm 26699 . . . . . 6 (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ (0 ∈ ℝ → 0 ∈ ℝ+)))
54simprbi 496 . . . . 5 (0 ∈ 𝐷 → (0 ∈ ℝ → 0 ∈ ℝ+))
62, 5mpi 20 . . . 4 (0 ∈ 𝐷 → 0 ∈ ℝ+)
71, 6mto 197 . . 3 ¬ 0 ∈ 𝐷
8 eleq1 2832 . . 3 (𝐴 = 0 → (𝐴𝐷 ↔ 0 ∈ 𝐷))
97, 8mtbiri 327 . 2 (𝐴 = 0 → ¬ 𝐴𝐷)
109necon2ai 2976 1 (𝐴𝐷𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  cdif 3973  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  -∞cmnf 11322  +crp 13057  (,]cioc 13408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-addrcl 11245  ax-rnegex 11255  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-rp 13058  df-ioc 13412
This theorem is referenced by:  logdmss  26702  logcnlem2  26703  logcnlem3  26704  logcnlem4  26705  logcnlem5  26706  logcn  26707  dvloglem  26708  logf1o2  26710  logtayl  26720  logtayl2  26722  dvcncxp1  26803  dvcnsqrt  26804  cxpcn  26805  cxpcnOLD  26806  atansssdm  26994  lgamgulmlem2  27091
  Copyright terms: Public domain W3C validator