MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqof2 Structured version   Visualization version   GIF version

Theorem seqof2 14097
Description: Distribute function operation through a sequence. Maps-to notation version of seqof 14096. (Contributed by Mario Carneiro, 7-Jul-2017.)
Hypotheses
Ref Expression
seqof2.1 (𝜑𝐴𝑉)
seqof2.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqof2.3 (𝜑 → (𝑀...𝑁) ⊆ 𝐵)
seqof2.4 ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)
Assertion
Ref Expression
seqof2 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝑀,𝑧   𝑥,𝑁,𝑧   𝜑,𝑥,𝑧   𝑧, +   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑧)   + (𝑥)   𝑉(𝑥,𝑧)   𝑊(𝑥,𝑧)   𝑋(𝑥,𝑧)

Proof of Theorem seqof2
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqof2.1 . . 3 (𝜑𝐴𝑉)
2 seqof2.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 nfv 1911 . . . . . 6 𝑥(𝜑𝑛 ∈ (𝑀...𝑁))
4 nffvmpt1 6917 . . . . . . 7 𝑥((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛)
5 nfcv 2902 . . . . . . . 8 𝑥𝐴
6 nffvmpt1 6917 . . . . . . . 8 𝑥((𝑥𝐵𝑋)‘𝑛)
75, 6nfmpt 5254 . . . . . . 7 𝑥(𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))
84, 7nfeq 2916 . . . . . 6 𝑥((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))
93, 8nfim 1893 . . . . 5 𝑥((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
10 eleq1w 2821 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
1110anbi2d 630 . . . . . 6 (𝑥 = 𝑛 → ((𝜑𝑥 ∈ (𝑀...𝑁)) ↔ (𝜑𝑛 ∈ (𝑀...𝑁))))
12 fveq2 6906 . . . . . . 7 (𝑥 = 𝑛 → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛))
13 fveq2 6906 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥𝐵𝑋)‘𝑥) = ((𝑥𝐵𝑋)‘𝑛))
1413mpteq2dv 5249 . . . . . . 7 (𝑥 = 𝑛 → (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
1512, 14eqeq12d 2750 . . . . . 6 (𝑥 = 𝑛 → (((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) ↔ ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))))
1611, 15imbi12d 344 . . . . 5 (𝑥 = 𝑛 → (((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥))) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))))
17 seqof2.3 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ 𝐵)
1817sselda 3994 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐵)
191adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐴𝑉)
2019mptexd 7243 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴𝑋) ∈ V)
21 eqid 2734 . . . . . . . 8 (𝑥𝐵 ↦ (𝑧𝐴𝑋)) = (𝑥𝐵 ↦ (𝑧𝐴𝑋))
2221fvmpt2 7026 . . . . . . 7 ((𝑥𝐵 ∧ (𝑧𝐴𝑋) ∈ V) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴𝑋))
2318, 20, 22syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴𝑋))
2418adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑥𝐵)
25 simpll 767 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝜑)
26 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑧𝐴)
27 seqof2.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)
2825, 24, 26, 27syl12anc 837 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑋𝑊)
29 eqid 2734 . . . . . . . . 9 (𝑥𝐵𝑋) = (𝑥𝐵𝑋)
3029fvmpt2 7026 . . . . . . . 8 ((𝑥𝐵𝑋𝑊) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
3124, 28, 30syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
3231mpteq2dva 5247 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) = (𝑧𝐴𝑋))
3323, 32eqtr4d 2777 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)))
349, 16, 33chvarfv 2237 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
35 nfcv 2902 . . . . 5 𝑦((𝑥𝐵𝑋)‘𝑛)
36 nfcsb1v 3932 . . . . . 6 𝑧𝑦 / 𝑧(𝑥𝐵𝑋)
37 nfcv 2902 . . . . . 6 𝑧𝑛
3836, 37nffv 6916 . . . . 5 𝑧(𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛)
39 csbeq1a 3921 . . . . . 6 (𝑧 = 𝑦 → (𝑥𝐵𝑋) = 𝑦 / 𝑧(𝑥𝐵𝑋))
4039fveq1d 6908 . . . . 5 (𝑧 = 𝑦 → ((𝑥𝐵𝑋)‘𝑛) = (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛))
4135, 38, 40cbvmpt 5258 . . . 4 (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)) = (𝑦𝐴 ↦ (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛))
4234, 41eqtrdi 2790 . . 3 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑦𝐴 ↦ (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛)))
431, 2, 42seqof 14096 . 2 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑦𝐴 ↦ (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁)))
44 nfcv 2902 . . 3 𝑦(seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)
45 nfcv 2902 . . . . 5 𝑧𝑀
46 nfcv 2902 . . . . 5 𝑧 +
4745, 46, 36nfseq 14048 . . . 4 𝑧seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))
48 nfcv 2902 . . . 4 𝑧𝑁
4947, 48nffv 6916 . . 3 𝑧(seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁)
5039seqeq3d 14046 . . . 4 (𝑧 = 𝑦 → seq𝑀( + , (𝑥𝐵𝑋)) = seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋)))
5150fveq1d 6908 . . 3 (𝑧 = 𝑦 → (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁) = (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁))
5244, 49, 51cbvmpt 5258 . 2 (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)) = (𝑦𝐴 ↦ (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁))
5343, 52eqtr4di 2792 1 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  csb 3907  wss 3962  cmpt 5230  cfv 6562  (class class class)co 7430  f cof 7694  cuz 12875  ...cfz 13543  seqcseq 14038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-seq 14039
This theorem is referenced by:  mtestbdd  26462  lgamgulm2  27093  lgamcvglem  27097
  Copyright terms: Public domain W3C validator