MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqof2 Structured version   Visualization version   GIF version

Theorem seqof2 14026
Description: Distribute function operation through a sequence. Maps-to notation version of seqof 14025. (Contributed by Mario Carneiro, 7-Jul-2017.)
Hypotheses
Ref Expression
seqof2.1 (𝜑𝐴𝑉)
seqof2.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqof2.3 (𝜑 → (𝑀...𝑁) ⊆ 𝐵)
seqof2.4 ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)
Assertion
Ref Expression
seqof2 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝑀,𝑧   𝑥,𝑁,𝑧   𝜑,𝑥,𝑧   𝑧, +   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑧)   + (𝑥)   𝑉(𝑥,𝑧)   𝑊(𝑥,𝑧)   𝑋(𝑥,𝑧)

Proof of Theorem seqof2
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqof2.1 . . 3 (𝜑𝐴𝑉)
2 seqof2.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 nfv 1918 . . . . . 6 𝑥(𝜑𝑛 ∈ (𝑀...𝑁))
4 nffvmpt1 6903 . . . . . . 7 𝑥((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛)
5 nfcv 2904 . . . . . . . 8 𝑥𝐴
6 nffvmpt1 6903 . . . . . . . 8 𝑥((𝑥𝐵𝑋)‘𝑛)
75, 6nfmpt 5256 . . . . . . 7 𝑥(𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))
84, 7nfeq 2917 . . . . . 6 𝑥((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))
93, 8nfim 1900 . . . . 5 𝑥((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
10 eleq1w 2817 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
1110anbi2d 630 . . . . . 6 (𝑥 = 𝑛 → ((𝜑𝑥 ∈ (𝑀...𝑁)) ↔ (𝜑𝑛 ∈ (𝑀...𝑁))))
12 fveq2 6892 . . . . . . 7 (𝑥 = 𝑛 → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛))
13 fveq2 6892 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥𝐵𝑋)‘𝑥) = ((𝑥𝐵𝑋)‘𝑛))
1413mpteq2dv 5251 . . . . . . 7 (𝑥 = 𝑛 → (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
1512, 14eqeq12d 2749 . . . . . 6 (𝑥 = 𝑛 → (((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) ↔ ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))))
1611, 15imbi12d 345 . . . . 5 (𝑥 = 𝑛 → (((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥))) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))))
17 seqof2.3 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ 𝐵)
1817sselda 3983 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐵)
191adantr 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐴𝑉)
2019mptexd 7226 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴𝑋) ∈ V)
21 eqid 2733 . . . . . . . 8 (𝑥𝐵 ↦ (𝑧𝐴𝑋)) = (𝑥𝐵 ↦ (𝑧𝐴𝑋))
2221fvmpt2 7010 . . . . . . 7 ((𝑥𝐵 ∧ (𝑧𝐴𝑋) ∈ V) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴𝑋))
2318, 20, 22syl2anc 585 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴𝑋))
2418adantr 482 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑥𝐵)
25 simpll 766 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝜑)
26 simpr 486 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑧𝐴)
27 seqof2.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)
2825, 24, 26, 27syl12anc 836 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑋𝑊)
29 eqid 2733 . . . . . . . . 9 (𝑥𝐵𝑋) = (𝑥𝐵𝑋)
3029fvmpt2 7010 . . . . . . . 8 ((𝑥𝐵𝑋𝑊) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
3124, 28, 30syl2anc 585 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
3231mpteq2dva 5249 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) = (𝑧𝐴𝑋))
3323, 32eqtr4d 2776 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)))
349, 16, 33chvarfv 2234 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
35 nfcv 2904 . . . . 5 𝑦((𝑥𝐵𝑋)‘𝑛)
36 nfcsb1v 3919 . . . . . 6 𝑧𝑦 / 𝑧(𝑥𝐵𝑋)
37 nfcv 2904 . . . . . 6 𝑧𝑛
3836, 37nffv 6902 . . . . 5 𝑧(𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛)
39 csbeq1a 3908 . . . . . 6 (𝑧 = 𝑦 → (𝑥𝐵𝑋) = 𝑦 / 𝑧(𝑥𝐵𝑋))
4039fveq1d 6894 . . . . 5 (𝑧 = 𝑦 → ((𝑥𝐵𝑋)‘𝑛) = (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛))
4135, 38, 40cbvmpt 5260 . . . 4 (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)) = (𝑦𝐴 ↦ (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛))
4234, 41eqtrdi 2789 . . 3 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑦𝐴 ↦ (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛)))
431, 2, 42seqof 14025 . 2 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑦𝐴 ↦ (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁)))
44 nfcv 2904 . . 3 𝑦(seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)
45 nfcv 2904 . . . . 5 𝑧𝑀
46 nfcv 2904 . . . . 5 𝑧 +
4745, 46, 36nfseq 13976 . . . 4 𝑧seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))
48 nfcv 2904 . . . 4 𝑧𝑁
4947, 48nffv 6902 . . 3 𝑧(seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁)
5039seqeq3d 13974 . . . 4 (𝑧 = 𝑦 → seq𝑀( + , (𝑥𝐵𝑋)) = seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋)))
5150fveq1d 6894 . . 3 (𝑧 = 𝑦 → (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁) = (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁))
5244, 49, 51cbvmpt 5260 . 2 (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)) = (𝑦𝐴 ↦ (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁))
5343, 52eqtr4di 2791 1 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  csb 3894  wss 3949  cmpt 5232  cfv 6544  (class class class)co 7409  f cof 7668  cuz 12822  ...cfz 13484  seqcseq 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-seq 13967
This theorem is referenced by:  mtestbdd  25917  lgamgulm2  26540  lgamcvglem  26544
  Copyright terms: Public domain W3C validator