MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqof2 Structured version   Visualization version   GIF version

Theorem seqof2 13663
Description: Distribute function operation through a sequence. Maps-to notation version of seqof 13662. (Contributed by Mario Carneiro, 7-Jul-2017.)
Hypotheses
Ref Expression
seqof2.1 (𝜑𝐴𝑉)
seqof2.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqof2.3 (𝜑 → (𝑀...𝑁) ⊆ 𝐵)
seqof2.4 ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)
Assertion
Ref Expression
seqof2 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝑀,𝑧   𝑥,𝑁,𝑧   𝜑,𝑥,𝑧   𝑧, +   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑧)   + (𝑥)   𝑉(𝑥,𝑧)   𝑊(𝑥,𝑧)   𝑋(𝑥,𝑧)

Proof of Theorem seqof2
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqof2.1 . . 3 (𝜑𝐴𝑉)
2 seqof2.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 nfv 1922 . . . . . 6 𝑥(𝜑𝑛 ∈ (𝑀...𝑁))
4 nffvmpt1 6749 . . . . . . 7 𝑥((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛)
5 nfcv 2906 . . . . . . . 8 𝑥𝐴
6 nffvmpt1 6749 . . . . . . . 8 𝑥((𝑥𝐵𝑋)‘𝑛)
75, 6nfmpt 5168 . . . . . . 7 𝑥(𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))
84, 7nfeq 2919 . . . . . 6 𝑥((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))
93, 8nfim 1904 . . . . 5 𝑥((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
10 eleq1w 2822 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
1110anbi2d 632 . . . . . 6 (𝑥 = 𝑛 → ((𝜑𝑥 ∈ (𝑀...𝑁)) ↔ (𝜑𝑛 ∈ (𝑀...𝑁))))
12 fveq2 6738 . . . . . . 7 (𝑥 = 𝑛 → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛))
13 fveq2 6738 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥𝐵𝑋)‘𝑥) = ((𝑥𝐵𝑋)‘𝑛))
1413mpteq2dv 5167 . . . . . . 7 (𝑥 = 𝑛 → (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
1512, 14eqeq12d 2755 . . . . . 6 (𝑥 = 𝑛 → (((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) ↔ ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))))
1611, 15imbi12d 348 . . . . 5 (𝑥 = 𝑛 → (((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥))) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))))
17 seqof2.3 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ 𝐵)
1817sselda 3917 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐵)
191adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐴𝑉)
2019mptexd 7061 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴𝑋) ∈ V)
21 eqid 2739 . . . . . . . 8 (𝑥𝐵 ↦ (𝑧𝐴𝑋)) = (𝑥𝐵 ↦ (𝑧𝐴𝑋))
2221fvmpt2 6850 . . . . . . 7 ((𝑥𝐵 ∧ (𝑧𝐴𝑋) ∈ V) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴𝑋))
2318, 20, 22syl2anc 587 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴𝑋))
2418adantr 484 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑥𝐵)
25 simpll 767 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝜑)
26 simpr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑧𝐴)
27 seqof2.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)
2825, 24, 26, 27syl12anc 837 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑋𝑊)
29 eqid 2739 . . . . . . . . 9 (𝑥𝐵𝑋) = (𝑥𝐵𝑋)
3029fvmpt2 6850 . . . . . . . 8 ((𝑥𝐵𝑋𝑊) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
3124, 28, 30syl2anc 587 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
3231mpteq2dva 5166 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) = (𝑧𝐴𝑋))
3323, 32eqtr4d 2782 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)))
349, 16, 33chvarfv 2240 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
35 nfcv 2906 . . . . 5 𝑦((𝑥𝐵𝑋)‘𝑛)
36 nfcsb1v 3852 . . . . . 6 𝑧𝑦 / 𝑧(𝑥𝐵𝑋)
37 nfcv 2906 . . . . . 6 𝑧𝑛
3836, 37nffv 6748 . . . . 5 𝑧(𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛)
39 csbeq1a 3841 . . . . . 6 (𝑧 = 𝑦 → (𝑥𝐵𝑋) = 𝑦 / 𝑧(𝑥𝐵𝑋))
4039fveq1d 6740 . . . . 5 (𝑧 = 𝑦 → ((𝑥𝐵𝑋)‘𝑛) = (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛))
4135, 38, 40cbvmpt 5172 . . . 4 (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)) = (𝑦𝐴 ↦ (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛))
4234, 41eqtrdi 2796 . . 3 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑦𝐴 ↦ (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛)))
431, 2, 42seqof 13662 . 2 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑦𝐴 ↦ (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁)))
44 nfcv 2906 . . 3 𝑦(seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)
45 nfcv 2906 . . . . 5 𝑧𝑀
46 nfcv 2906 . . . . 5 𝑧 +
4745, 46, 36nfseq 13613 . . . 4 𝑧seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))
48 nfcv 2906 . . . 4 𝑧𝑁
4947, 48nffv 6748 . . 3 𝑧(seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁)
5039seqeq3d 13611 . . . 4 (𝑧 = 𝑦 → seq𝑀( + , (𝑥𝐵𝑋)) = seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋)))
5150fveq1d 6740 . . 3 (𝑧 = 𝑦 → (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁) = (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁))
5244, 49, 51cbvmpt 5172 . 2 (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)) = (𝑦𝐴 ↦ (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁))
5343, 52eqtr4di 2798 1 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3422  csb 3827  wss 3882  cmpt 5151  cfv 6400  (class class class)co 7234  f cof 7488  cuz 12465  ...cfz 13122  seqcseq 13603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10812  ax-resscn 10813  ax-1cn 10814  ax-icn 10815  ax-addcl 10816  ax-addrcl 10817  ax-mulcl 10818  ax-mulrcl 10819  ax-mulcom 10820  ax-addass 10821  ax-mulass 10822  ax-distr 10823  ax-i2m1 10824  ax-1ne0 10825  ax-1rid 10826  ax-rnegex 10827  ax-rrecex 10828  ax-cnre 10829  ax-pre-lttri 10830  ax-pre-lttrn 10831  ax-pre-ltadd 10832  ax-pre-mulgt0 10833
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3711  df-csb 3828  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-of 7490  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-pnf 10896  df-mnf 10897  df-xr 10898  df-ltxr 10899  df-le 10900  df-sub 11091  df-neg 11092  df-nn 11858  df-n0 12118  df-z 12204  df-uz 12466  df-fz 13123  df-seq 13604
This theorem is referenced by:  mtestbdd  25326  lgamgulm2  25947  lgamcvglem  25951
  Copyright terms: Public domain W3C validator