Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsneine0 Structured version   Visualization version   GIF version

Theorem ntrclsneine0 44047
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 21-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsneine0 (𝜑 → (∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐾𝑠)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑠   𝑗,𝐼,𝑘,𝑠   𝜑,𝑖,𝑗,𝑘,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥,𝑖,𝑗,𝑘,𝑠)   𝐼(𝑥,𝑖)   𝐾(𝑥,𝑖,𝑗,𝑘,𝑠)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑠)

Proof of Theorem ntrclsneine0
StepHypRef Expression
1 ntrcls.o . . 3 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . 3 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . 4 (𝜑𝐼𝐷𝐾)
43adantr 480 . . 3 ((𝜑𝑥𝐵) → 𝐼𝐷𝐾)
5 simpr 484 . . 3 ((𝜑𝑥𝐵) → 𝑥𝐵)
61, 2, 4, 5ntrclsneine0lem 44046 . 2 ((𝜑𝑥𝐵) → (∃𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐾𝑠)))
76ralbidva 3154 1 (𝜑 → (∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐾𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  m cmap 8776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator