| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltayl | Structured version Visualization version GIF version | ||
| Description: Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016.) |
| Ref | Expression |
|---|---|
| taylfval.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| taylfval.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| taylfval.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| taylfval.n | ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
| taylfval.b | ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| taylfval.t | ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
| Ref | Expression |
|---|---|
| eltayl | ⊢ (𝜑 → (𝑋𝑇𝑌 ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | taylfval.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | taylfval.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 3 | taylfval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 4 | taylfval.n | . . . 4 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 5 | taylfval.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | |
| 6 | taylfval.t | . . . 4 ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | taylfval 26273 | . . 3 ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) |
| 8 | 7 | eleq2d 2815 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ 𝑇 ↔ 〈𝑋, 𝑌〉 ∈ ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))))) |
| 9 | df-br 5111 | . . 3 ⊢ (𝑋𝑇𝑌 ↔ 〈𝑋, 𝑌〉 ∈ 𝑇) | |
| 10 | 9 | bicomi 224 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ 𝑇 ↔ 𝑋𝑇𝑌) |
| 11 | oveq1 7397 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 − 𝐵) = (𝑋 − 𝐵)) | |
| 12 | 11 | oveq1d 7405 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑥 − 𝐵)↑𝑘) = ((𝑋 − 𝐵)↑𝑘)) |
| 13 | 12 | oveq2d 7406 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))) |
| 14 | 13 | mpteq2dv 5204 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)))) |
| 15 | 14 | oveq2d 7406 | . . 3 ⊢ (𝑥 = 𝑋 → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))))) |
| 16 | 15 | opeliunxp2 5805 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)))))) |
| 17 | 8, 10, 16 | 3bitr3g 313 | 1 ⊢ (𝜑 → (𝑋𝑇𝑌 ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 {csn 4592 {cpr 4594 〈cop 4598 ∪ ciun 4958 class class class wbr 5110 ↦ cmpt 5191 × cxp 5639 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 · cmul 11080 +∞cpnf 11212 − cmin 11412 / cdiv 11842 ℕ0cn0 12449 ℤcz 12536 [,]cicc 13316 ↑cexp 14033 !cfa 14245 ℂfldccnfld 21271 tsums ctsu 24020 D𝑛 cdvn 25772 Tayl ctayl 26267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-fac 14246 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-ur 20098 df-ring 20151 df-cring 20152 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cnp 23122 df-haus 23209 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-tsms 24021 df-xms 24215 df-ms 24216 df-limc 25774 df-dv 25775 df-dvn 25776 df-tayl 26269 |
| This theorem is referenced by: taylf 26275 tayl0 26276 |
| Copyright terms: Public domain | W3C validator |