MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltayl Structured version   Visualization version   GIF version

Theorem eltayl 26337
Description: Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
eltayl (𝜑 → (𝑋𝑇𝑌 ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)   𝑌(𝑘)

Proof of Theorem eltayl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 taylfval.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylfval.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
3 taylfval.a . . . 4 (𝜑𝐴𝑆)
4 taylfval.n . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
5 taylfval.b . . . 4 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
6 taylfval.t . . . 4 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylfval 26336 . . 3 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
87eleq2d 2819 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ 𝑇 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
9 df-br 5124 . . 3 (𝑋𝑇𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑇)
109bicomi 224 . 2 (⟨𝑋, 𝑌⟩ ∈ 𝑇𝑋𝑇𝑌)
11 oveq1 7420 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐵) = (𝑋𝐵))
1211oveq1d 7428 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝐵)↑𝑘) = ((𝑋𝐵)↑𝑘))
1312oveq2d 7429 . . . . 5 (𝑥 = 𝑋 → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))
1413mpteq2dv 5224 . . . 4 (𝑥 = 𝑋 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘))))
1514oveq2d 7429 . . 3 (𝑥 = 𝑋 → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))))
1615opeliunxp2 5829 . 2 (⟨𝑋, 𝑌⟩ ∈ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘))))))
178, 10, 163bitr3g 313 1 (𝜑 → (𝑋𝑇𝑌 ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  cin 3930  wss 3931  {csn 4606  {cpr 4608  cop 4612   ciun 4971   class class class wbr 5123  cmpt 5205   × cxp 5663  dom cdm 5665  wf 6537  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137   · cmul 11142  +∞cpnf 11274  cmin 11474   / cdiv 11902  0cn0 12509  cz 12596  [,]cicc 13372  cexp 14084  !cfa 14294  fldccnfld 21326   tsums ctsu 24080   D𝑛 cdvn 25835   Tayl ctayl 26330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-icc 13376  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-fac 14295  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-plusg 17286  df-mulr 17287  df-starv 17288  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-cntz 19304  df-cmn 19768  df-abl 19769  df-mgp 20106  df-ur 20147  df-ring 20200  df-cring 20201  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-fbas 21323  df-fg 21324  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-lp 23090  df-perf 23091  df-cnp 23182  df-haus 23269  df-fil 23800  df-fm 23892  df-flim 23893  df-flf 23894  df-tsms 24081  df-xms 24275  df-ms 24276  df-limc 25837  df-dv 25838  df-dvn 25839  df-tayl 26332
This theorem is referenced by:  taylf  26338  tayl0  26339
  Copyright terms: Public domain W3C validator