Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfrcl2 Structured version   Visualization version   GIF version

Theorem oppfrcl2 49025
Description: If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = (oppFunc‘𝐹)
oppfrcl2.4 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
Assertion
Ref Expression
oppfrcl2 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem oppfrcl2
StepHypRef Expression
1 oppfrcl2.4 . . . 4 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
2 oppfrcl.1 . . . . 5 (𝜑𝐺𝑅)
3 oppfrcl.2 . . . . 5 Rel 𝑅
4 oppfrcl.3 . . . . 5 𝐺 = (oppFunc‘𝐹)
52, 3, 4oppfrcl 49024 . . . 4 (𝜑𝐹 ∈ (V × V))
61, 5eqeltrrd 2835 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (V × V))
7 0nelxp 5688 . . 3 ¬ ∅ ∈ (V × V)
8 nelne2 3030 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ∅ ∈ (V × V)) → ⟨𝐴, 𝐵⟩ ≠ ∅)
96, 7, 8sylancl 586 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ ≠ ∅)
10 opprc 4872 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
1110necon1ai 2959 . 2 (⟨𝐴, 𝐵⟩ ≠ ∅ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
129, 11syl 17 1 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  c0 4308  cop 4607   × cxp 5652  Rel wrel 5659  cfv 6530  oppFunccoppf 49019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-oppf 49020
This theorem is referenced by:  oppfrcl3  49026  oppf1st2nd  49027
  Copyright terms: Public domain W3C validator