Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfrcl2 Structured version   Visualization version   GIF version

Theorem oppfrcl2 49122
Description: If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = ( oppFunc ‘𝐹)
oppfrcl2.4 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
Assertion
Ref Expression
oppfrcl2 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem oppfrcl2
StepHypRef Expression
1 oppfrcl2.4 . . . 4 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
2 oppfrcl.1 . . . . 5 (𝜑𝐺𝑅)
3 oppfrcl.2 . . . . 5 Rel 𝑅
4 oppfrcl.3 . . . . 5 𝐺 = ( oppFunc ‘𝐹)
52, 3, 4oppfrcl 49121 . . . 4 (𝜑𝐹 ∈ (V × V))
61, 5eqeltrrd 2830 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (V × V))
7 0nelxp 5675 . . 3 ¬ ∅ ∈ (V × V)
8 nelne2 3024 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ∅ ∈ (V × V)) → ⟨𝐴, 𝐵⟩ ≠ ∅)
96, 7, 8sylancl 586 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ ≠ ∅)
10 opprc 4863 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
1110necon1ai 2953 . 2 (⟨𝐴, 𝐵⟩ ≠ ∅ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
129, 11syl 17 1 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4299  cop 4598   × cxp 5639  Rel wrel 5646  cfv 6514   oppFunc coppf 49115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-oppf 49116
This theorem is referenced by:  oppfrcl3  49123  oppf1st2nd  49124
  Copyright terms: Public domain W3C validator