| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfrcl2 | Structured version Visualization version GIF version | ||
| Description: If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfrcl.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑅) |
| oppfrcl.2 | ⊢ Rel 𝑅 |
| oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘𝐹) |
| oppfrcl2.4 | ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) |
| Ref | Expression |
|---|---|
| oppfrcl2 | ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl2.4 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) | |
| 2 | oppfrcl.1 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑅) | |
| 3 | oppfrcl.2 | . . . . 5 ⊢ Rel 𝑅 | |
| 4 | oppfrcl.3 | . . . . 5 ⊢ 𝐺 = ( oppFunc ‘𝐹) | |
| 5 | 2, 3, 4 | oppfrcl 49121 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (V × V)) |
| 6 | 1, 5 | eqeltrrd 2830 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (V × V)) |
| 7 | 0nelxp 5675 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
| 8 | nelne2 3024 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ (V × V) ∧ ¬ ∅ ∈ (V × V)) → 〈𝐴, 𝐵〉 ≠ ∅) | |
| 9 | 6, 7, 8 | sylancl 586 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ≠ ∅) |
| 10 | opprc 4863 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
| 11 | 10 | necon1ai 2953 | . 2 ⊢ (〈𝐴, 𝐵〉 ≠ ∅ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 12 | 9, 11 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 〈cop 4598 × cxp 5639 Rel wrel 5646 ‘cfv 6514 oppFunc coppf 49115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-oppf 49116 |
| This theorem is referenced by: oppfrcl3 49123 oppf1st2nd 49124 |
| Copyright terms: Public domain | W3C validator |