Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfrcl2 Structured version   Visualization version   GIF version

Theorem oppfrcl2 49111
Description: If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = ( oppFunc ‘𝐹)
oppfrcl2.4 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
Assertion
Ref Expression
oppfrcl2 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem oppfrcl2
StepHypRef Expression
1 oppfrcl2.4 . . . 4 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
2 oppfrcl.1 . . . . 5 (𝜑𝐺𝑅)
3 oppfrcl.2 . . . . 5 Rel 𝑅
4 oppfrcl.3 . . . . 5 𝐺 = ( oppFunc ‘𝐹)
52, 3, 4oppfrcl 49110 . . . 4 (𝜑𝐹 ∈ (V × V))
61, 5eqeltrrd 2829 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (V × V))
7 0nelxp 5665 . . 3 ¬ ∅ ∈ (V × V)
8 nelne2 3023 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ∅ ∈ (V × V)) → ⟨𝐴, 𝐵⟩ ≠ ∅)
96, 7, 8sylancl 586 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ ≠ ∅)
10 opprc 4856 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
1110necon1ai 2952 . 2 (⟨𝐴, 𝐵⟩ ≠ ∅ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
129, 11syl 17 1 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  c0 4292  cop 4591   × cxp 5629  Rel wrel 5636  cfv 6499   oppFunc coppf 49104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-oppf 49105
This theorem is referenced by:  oppfrcl3  49112  oppf1st2nd  49113
  Copyright terms: Public domain W3C validator