Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfrcl2 Structured version   Visualization version   GIF version

Theorem oppfrcl2 49229
Description: If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = ( oppFunc ‘𝐹)
oppfrcl2.4 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
Assertion
Ref Expression
oppfrcl2 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem oppfrcl2
StepHypRef Expression
1 oppfrcl2.4 . . . 4 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
2 oppfrcl.1 . . . . 5 (𝜑𝐺𝑅)
3 oppfrcl.2 . . . . 5 Rel 𝑅
4 oppfrcl.3 . . . . 5 𝐺 = ( oppFunc ‘𝐹)
52, 3, 4oppfrcl 49228 . . . 4 (𝜑𝐹 ∈ (V × V))
61, 5eqeltrrd 2832 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (V × V))
7 0nelxp 5648 . . 3 ¬ ∅ ∈ (V × V)
8 nelne2 3026 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ∅ ∈ (V × V)) → ⟨𝐴, 𝐵⟩ ≠ ∅)
96, 7, 8sylancl 586 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ ≠ ∅)
10 opprc 4845 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
1110necon1ai 2955 . 2 (⟨𝐴, 𝐵⟩ ≠ ∅ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
129, 11syl 17 1 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4280  cop 4579   × cxp 5612  Rel wrel 5619  cfv 6481   oppFunc coppf 49222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-oppf 49223
This theorem is referenced by:  oppfrcl3  49230  oppf1st2nd  49231
  Copyright terms: Public domain W3C validator