| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfrcl2 | Structured version Visualization version GIF version | ||
| Description: If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfrcl.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑅) |
| oppfrcl.2 | ⊢ Rel 𝑅 |
| oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘𝐹) |
| oppfrcl2.4 | ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) |
| Ref | Expression |
|---|---|
| oppfrcl2 | ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl2.4 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) | |
| 2 | oppfrcl.1 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑅) | |
| 3 | oppfrcl.2 | . . . . 5 ⊢ Rel 𝑅 | |
| 4 | oppfrcl.3 | . . . . 5 ⊢ 𝐺 = ( oppFunc ‘𝐹) | |
| 5 | 2, 3, 4 | oppfrcl 49110 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (V × V)) |
| 6 | 1, 5 | eqeltrrd 2829 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (V × V)) |
| 7 | 0nelxp 5665 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
| 8 | nelne2 3023 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ (V × V) ∧ ¬ ∅ ∈ (V × V)) → 〈𝐴, 𝐵〉 ≠ ∅) | |
| 9 | 6, 7, 8 | sylancl 586 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ≠ ∅) |
| 10 | opprc 4856 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
| 11 | 10 | necon1ai 2952 | . 2 ⊢ (〈𝐴, 𝐵〉 ≠ ∅ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 12 | 9, 11 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∅c0 4292 〈cop 4591 × cxp 5629 Rel wrel 5636 ‘cfv 6499 oppFunc coppf 49104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-oppf 49105 |
| This theorem is referenced by: oppfrcl3 49112 oppf1st2nd 49113 |
| Copyright terms: Public domain | W3C validator |