Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcoppc5 Structured version   Visualization version   GIF version

Theorem funcoppc5 49140
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
funcoppc2.o 𝑂 = (oppCat‘𝐶)
funcoppc2.p 𝑃 = (oppCat‘𝐷)
funcoppc2.c (𝜑𝐶𝑉)
funcoppc2.d (𝜑𝐷𝑊)
funcoppc5.f (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃))
Assertion
Ref Expression
funcoppc5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))

Proof of Theorem funcoppc5
StepHypRef Expression
1 funcoppc5.f . . . 4 (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃))
2 relfunc 17769 . . . 4 Rel (𝑂 Func 𝑃)
3 eqid 2729 . . . 4 ( oppFunc ‘𝐹) = ( oppFunc ‘𝐹)
41, 2, 3oppfrcl 49123 . . 3 (𝜑𝐹 ∈ (V × V))
5 1st2nd2 7963 . . 3 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
64, 5syl 17 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
7 funcoppc2.o . . . 4 𝑂 = (oppCat‘𝐶)
8 funcoppc2.p . . . 4 𝑃 = (oppCat‘𝐷)
9 funcoppc2.c . . . 4 (𝜑𝐶𝑉)
10 funcoppc2.d . . . 4 (𝜑𝐷𝑊)
116fveq2d 6826 . . . . . 6 (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩))
12 df-ov 7352 . . . . . 6 ((1st𝐹) oppFunc (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩)
1311, 12eqtr4di 2782 . . . . 5 (𝜑 → ( oppFunc ‘𝐹) = ((1st𝐹) oppFunc (2nd𝐹)))
1413, 1eqeltrrd 2829 . . . 4 (𝜑 → ((1st𝐹) oppFunc (2nd𝐹)) ∈ (𝑂 Func 𝑃))
157, 8, 9, 10, 14funcoppc4 49139 . . 3 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
16 df-br 5093 . . 3 ((1st𝐹)(𝐶 Func 𝐷)(2nd𝐹) ↔ ⟨(1st𝐹), (2nd𝐹)⟩ ∈ (𝐶 Func 𝐷))
1715, 16sylib 218 . 2 (𝜑 → ⟨(1st𝐹), (2nd𝐹)⟩ ∈ (𝐶 Func 𝐷))
186, 17eqeltrd 2828 1 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583   class class class wbr 5092   × cxp 5617  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  oppCatcoppc 17617   Func cfunc 17761   oppFunc coppf 49117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-homf 17576  df-comf 17577  df-oppc 17618  df-func 17765  df-oppf 49118
This theorem is referenced by:  oppfuprcl  49199  natoppfb  49226  lmddu  49662  cmddu  49663
  Copyright terms: Public domain W3C validator