Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcoppc5 Structured version   Visualization version   GIF version

Theorem funcoppc5 49138
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
funcoppc2.o 𝑂 = (oppCat‘𝐶)
funcoppc2.p 𝑃 = (oppCat‘𝐷)
funcoppc2.c (𝜑𝐶𝑉)
funcoppc2.d (𝜑𝐷𝑊)
funcoppc5.f (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃))
Assertion
Ref Expression
funcoppc5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))

Proof of Theorem funcoppc5
StepHypRef Expression
1 funcoppc5.f . . . 4 (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃))
2 relfunc 17831 . . . 4 Rel (𝑂 Func 𝑃)
3 eqid 2730 . . . 4 ( oppFunc ‘𝐹) = ( oppFunc ‘𝐹)
41, 2, 3oppfrcl 49121 . . 3 (𝜑𝐹 ∈ (V × V))
5 1st2nd2 8010 . . 3 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
64, 5syl 17 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
7 funcoppc2.o . . . 4 𝑂 = (oppCat‘𝐶)
8 funcoppc2.p . . . 4 𝑃 = (oppCat‘𝐷)
9 funcoppc2.c . . . 4 (𝜑𝐶𝑉)
10 funcoppc2.d . . . 4 (𝜑𝐷𝑊)
116fveq2d 6865 . . . . . 6 (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩))
12 df-ov 7393 . . . . . 6 ((1st𝐹) oppFunc (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩)
1311, 12eqtr4di 2783 . . . . 5 (𝜑 → ( oppFunc ‘𝐹) = ((1st𝐹) oppFunc (2nd𝐹)))
1413, 1eqeltrrd 2830 . . . 4 (𝜑 → ((1st𝐹) oppFunc (2nd𝐹)) ∈ (𝑂 Func 𝑃))
157, 8, 9, 10, 14funcoppc4 49137 . . 3 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
16 df-br 5111 . . 3 ((1st𝐹)(𝐶 Func 𝐷)(2nd𝐹) ↔ ⟨(1st𝐹), (2nd𝐹)⟩ ∈ (𝐶 Func 𝐷))
1715, 16sylib 218 . 2 (𝜑 → ⟨(1st𝐹), (2nd𝐹)⟩ ∈ (𝐶 Func 𝐷))
186, 17eqeltrd 2829 1 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598   class class class wbr 5110   × cxp 5639  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  oppCatcoppc 17679   Func cfunc 17823   oppFunc coppf 49115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-homf 17638  df-comf 17639  df-oppc 17680  df-func 17827  df-oppf 49116
This theorem is referenced by:  oppfuprcl  49197  natoppfb  49224  lmddu  49660  cmddu  49661
  Copyright terms: Public domain W3C validator