| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcoppc5 | Structured version Visualization version GIF version | ||
| Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| funcoppc2.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| funcoppc2.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| funcoppc2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| funcoppc2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| funcoppc5.f | ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) |
| Ref | Expression |
|---|---|
| funcoppc5 | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc5.f | . . . 4 ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) | |
| 2 | relfunc 17831 | . . . 4 ⊢ Rel (𝑂 Func 𝑃) | |
| 3 | eqid 2730 | . . . 4 ⊢ ( oppFunc ‘𝐹) = ( oppFunc ‘𝐹) | |
| 4 | 1, 2, 3 | oppfrcl 49121 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (V × V)) |
| 5 | 1st2nd2 8010 | . . 3 ⊢ (𝐹 ∈ (V × V) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 7 | funcoppc2.o | . . . 4 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 8 | funcoppc2.p | . . . 4 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 9 | funcoppc2.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 10 | funcoppc2.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 11 | 6 | fveq2d 6865 | . . . . . 6 ⊢ (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 12 | df-ov 7393 | . . . . . 6 ⊢ ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 13 | 11, 12 | eqtr4di 2783 | . . . . 5 ⊢ (𝜑 → ( oppFunc ‘𝐹) = ((1st ‘𝐹) oppFunc (2nd ‘𝐹))) |
| 14 | 13, 1 | eqeltrrd 2830 | . . . 4 ⊢ (𝜑 → ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) ∈ (𝑂 Func 𝑃)) |
| 15 | 7, 8, 9, 10, 14 | funcoppc4 49137 | . . 3 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 16 | df-br 5111 | . . 3 ⊢ ((1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹) ↔ 〈(1st ‘𝐹), (2nd ‘𝐹)〉 ∈ (𝐶 Func 𝐷)) | |
| 17 | 15, 16 | sylib 218 | . 2 ⊢ (𝜑 → 〈(1st ‘𝐹), (2nd ‘𝐹)〉 ∈ (𝐶 Func 𝐷)) |
| 18 | 6, 17 | eqeltrd 2829 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 class class class wbr 5110 × cxp 5639 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 oppCatcoppc 17679 Func cfunc 17823 oppFunc coppf 49115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-homf 17638 df-comf 17639 df-oppc 17680 df-func 17827 df-oppf 49116 |
| This theorem is referenced by: oppfuprcl 49197 natoppfb 49224 lmddu 49660 cmddu 49661 |
| Copyright terms: Public domain | W3C validator |