MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem14 Structured version   Visualization version   GIF version

Theorem tfrlem14 7772
Description: Lemma for transfinite recursion. Assuming ax-rep 5008, dom recs ∈ V ↔ recs ∈ V, so since dom recs is an ordinal, it must be equal to On. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem14 dom recs(𝐹) = On
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem14
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem13 7771 . . 3 ¬ recs(𝐹) ∈ V
31tfrlem7 7764 . . . 4 Fun recs(𝐹)
4 funex 6756 . . . 4 ((Fun recs(𝐹) ∧ dom recs(𝐹) ∈ On) → recs(𝐹) ∈ V)
53, 4mpan 680 . . 3 (dom recs(𝐹) ∈ On → recs(𝐹) ∈ V)
62, 5mto 189 . 2 ¬ dom recs(𝐹) ∈ On
71tfrlem8 7765 . . 3 Ord dom recs(𝐹)
8 ordeleqon 7268 . . 3 (Ord dom recs(𝐹) ↔ (dom recs(𝐹) ∈ On ∨ dom recs(𝐹) = On))
97, 8mpbi 222 . 2 (dom recs(𝐹) ∈ On ∨ dom recs(𝐹) = On)
106, 9mtpor 1814 1 dom recs(𝐹) = On
Colors of variables: wff setvar class
Syntax hints:  wa 386  wo 836   = wceq 1601  wcel 2107  {cab 2763  wral 3090  wrex 3091  Vcvv 3398  dom cdm 5357  cres 5359  Ord word 5977  Oncon0 5978  Fun wfun 6131   Fn wfn 6132  cfv 6137  recscrecs 7752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-wrecs 7691  df-recs 7753
This theorem is referenced by:  tfr1  7778
  Copyright terms: Public domain W3C validator