| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem14 | Structured version Visualization version GIF version | ||
| Description: Lemma for transfinite recursion. Assuming ax-rep 5218, dom recs ∈ V ↔ recs ∈ V, so since dom recs is an ordinal, it must be equal to On. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Ref | Expression |
|---|---|
| tfrlem14 | ⊢ dom recs(𝐹) = On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem13 8312 | . . 3 ⊢ ¬ recs(𝐹) ∈ V |
| 3 | 1 | tfrlem7 8305 | . . . 4 ⊢ Fun recs(𝐹) |
| 4 | funex 7155 | . . . 4 ⊢ ((Fun recs(𝐹) ∧ dom recs(𝐹) ∈ On) → recs(𝐹) ∈ V) | |
| 5 | 3, 4 | mpan 690 | . . 3 ⊢ (dom recs(𝐹) ∈ On → recs(𝐹) ∈ V) |
| 6 | 2, 5 | mto 197 | . 2 ⊢ ¬ dom recs(𝐹) ∈ On |
| 7 | 1 | tfrlem8 8306 | . . 3 ⊢ Ord dom recs(𝐹) |
| 8 | ordeleqon 7718 | . . 3 ⊢ (Ord dom recs(𝐹) ↔ (dom recs(𝐹) ∈ On ∨ dom recs(𝐹) = On)) | |
| 9 | 7, 8 | mpbi 230 | . 2 ⊢ (dom recs(𝐹) ∈ On ∨ dom recs(𝐹) = On) |
| 10 | 6, 9 | mtpor 1770 | 1 ⊢ dom recs(𝐹) = On |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3436 dom cdm 5619 ↾ cres 5621 Ord word 6306 Oncon0 6307 Fun wfun 6476 Fn wfn 6477 ‘cfv 6482 recscrecs 8293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 |
| This theorem is referenced by: tfr1 8319 |
| Copyright terms: Public domain | W3C validator |