![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem14 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. Assuming ax-rep 5278, dom recs ∈ V ↔ recs ∈ V, so since dom recs is an ordinal, it must be equal to On. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem14 | ⊢ dom recs(𝐹) = On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem13 8391 | . . 3 ⊢ ¬ recs(𝐹) ∈ V |
3 | 1 | tfrlem7 8384 | . . . 4 ⊢ Fun recs(𝐹) |
4 | funex 7216 | . . . 4 ⊢ ((Fun recs(𝐹) ∧ dom recs(𝐹) ∈ On) → recs(𝐹) ∈ V) | |
5 | 3, 4 | mpan 687 | . . 3 ⊢ (dom recs(𝐹) ∈ On → recs(𝐹) ∈ V) |
6 | 2, 5 | mto 196 | . 2 ⊢ ¬ dom recs(𝐹) ∈ On |
7 | 1 | tfrlem8 8385 | . . 3 ⊢ Ord dom recs(𝐹) |
8 | ordeleqon 7766 | . . 3 ⊢ (Ord dom recs(𝐹) ↔ (dom recs(𝐹) ∈ On ∨ dom recs(𝐹) = On)) | |
9 | 7, 8 | mpbi 229 | . 2 ⊢ (dom recs(𝐹) ∈ On ∨ dom recs(𝐹) = On) |
10 | 6, 9 | mtpor 1764 | 1 ⊢ dom recs(𝐹) = On |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 {cab 2703 ∀wral 3055 ∃wrex 3064 Vcvv 3468 dom cdm 5669 ↾ cres 5671 Ord word 6357 Oncon0 6358 Fun wfun 6531 Fn wfn 6532 ‘cfv 6537 recscrecs 8371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 |
This theorem is referenced by: tfr1 8398 |
Copyright terms: Public domain | W3C validator |