MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem14 Structured version   Visualization version   GIF version

Theorem tfrlem14 8392
Description: Lemma for transfinite recursion. Assuming ax-rep 5278, dom recs ∈ V ↔ recs ∈ V, so since dom recs is an ordinal, it must be equal to On. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem14 dom recs(𝐹) = On
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem14
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem13 8391 . . 3 ¬ recs(𝐹) ∈ V
31tfrlem7 8384 . . . 4 Fun recs(𝐹)
4 funex 7216 . . . 4 ((Fun recs(𝐹) ∧ dom recs(𝐹) ∈ On) → recs(𝐹) ∈ V)
53, 4mpan 687 . . 3 (dom recs(𝐹) ∈ On → recs(𝐹) ∈ V)
62, 5mto 196 . 2 ¬ dom recs(𝐹) ∈ On
71tfrlem8 8385 . . 3 Ord dom recs(𝐹)
8 ordeleqon 7766 . . 3 (Ord dom recs(𝐹) ↔ (dom recs(𝐹) ∈ On ∨ dom recs(𝐹) = On))
97, 8mpbi 229 . 2 (dom recs(𝐹) ∈ On ∨ dom recs(𝐹) = On)
106, 9mtpor 1764 1 dom recs(𝐹) = On
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 844   = wceq 1533  wcel 2098  {cab 2703  wral 3055  wrex 3064  Vcvv 3468  dom cdm 5669  cres 5671  Ord word 6357  Oncon0 6358  Fun wfun 6531   Fn wfn 6532  cfv 6537  recscrecs 8371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372
This theorem is referenced by:  tfr1  8398
  Copyright terms: Public domain W3C validator