MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem14 Structured version   Visualization version   GIF version

Theorem tfrlem14 8412
Description: Lemma for transfinite recursion. Assuming ax-rep 5286, dom recs ∈ V ↔ recs ∈ V, so since dom recs is an ordinal, it must be equal to On. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem14 dom recs(𝐹) = On
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem14
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem13 8411 . . 3 ¬ recs(𝐹) ∈ V
31tfrlem7 8404 . . . 4 Fun recs(𝐹)
4 funex 7231 . . . 4 ((Fun recs(𝐹) ∧ dom recs(𝐹) ∈ On) → recs(𝐹) ∈ V)
53, 4mpan 688 . . 3 (dom recs(𝐹) ∈ On → recs(𝐹) ∈ V)
62, 5mto 196 . 2 ¬ dom recs(𝐹) ∈ On
71tfrlem8 8405 . . 3 Ord dom recs(𝐹)
8 ordeleqon 7785 . . 3 (Ord dom recs(𝐹) ↔ (dom recs(𝐹) ∈ On ∨ dom recs(𝐹) = On))
97, 8mpbi 229 . 2 (dom recs(𝐹) ∈ On ∨ dom recs(𝐹) = On)
106, 9mtpor 1764 1 dom recs(𝐹) = On
Colors of variables: wff setvar class
Syntax hints:  wa 394  wo 845   = wceq 1533  wcel 2098  {cab 2702  wral 3050  wrex 3059  Vcvv 3461  dom cdm 5678  cres 5680  Ord word 6370  Oncon0 6371  Fun wfun 6543   Fn wfn 6544  cfv 6549  recscrecs 8391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392
This theorem is referenced by:  tfr1  8418
  Copyright terms: Public domain W3C validator